文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在白色念珠菌生物膜调控网络的遗传多样性中进行强化。

Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network.

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Pathog. 2023 Jan 25;19(1):e1011109. doi: 10.1371/journal.ppat.1011109. eCollection 2023 Jan.


DOI:10.1371/journal.ppat.1011109
PMID:36696432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9901766/
Abstract

Biofilms of the fungal pathogen Candida albicans include abundant long filaments called hyphae. These cells express hypha-associated genes, which specify diverse virulence functions including surface adhesins that ensure biofilm integrity. Biofilm formation, virulence, and hypha-associated gene expression all depend upon the transcription factor Efg1. This transcription factor has been characterized extensively in the C. albicans type strain SC5314 and derivatives, but only recently has its function been explored in other clinical isolates. Here we define a principal set of Efg1-responsive genes whose expression is significantly altered by an efg1Δ/Δ mutation across 17 clinical isolates. This principal gene set includes 68 direct Efg1 targets, whose 5' regions are bound by Efg1 in five clinical isolates, and 42 indirect Efg1 targets, whose 5' regions are not detectably bound by Efg1. Three direct Efg1 target genes encode transcription factors-BRG1, UME6, and WOR3 -whose increased expression in an efg1Δ/Δ mutant restores expression of multiple indirect and direct principal targets, as well as biofilm formation ability. Although BRG1 and UME6 are well known positive regulators of hypha-associated genes and biofilm formation, WOR3 is best known as an antagonist of Efg1 in the sexual mating pathway. We confirm the positive role of WOR3 in biofilm formation with the finding that a wor3Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo biofilm model. Positive control of Efg1 direct target genes by other Efg1 direct target genes-BRG1, UME6, and WOR3 -may buffer principal Efg1-responsive gene expression against the impact of genetic variation in the C. albicans species.

摘要

真菌病原体白色念珠菌的生物膜包括丰富的长丝,称为菌丝。这些细胞表达与菌丝相关的基因,这些基因指定了多种毒力功能,包括确保生物膜完整性的表面黏附素。生物膜形成、毒力和与菌丝相关的基因表达都依赖于转录因子 Efg1。这个转录因子在白色念珠菌标准菌株 SC5314 及其衍生物中得到了广泛的研究,但直到最近才在其他临床分离株中探索了其功能。在这里,我们定义了一组主要的 Efg1 响应基因,这些基因的表达在 17 个临床分离株中由于 efg1Δ/Δ 突变而发生显著改变。这个主要基因集包括 68 个直接的 Efg1 靶基因,它们的 5' 区域在五个临床分离株中被 Efg1 结合,以及 42 个间接的 Efg1 靶基因,它们的 5' 区域没有被 Efg1 检测到结合。三个直接的 Efg1 靶基因编码转录因子-BRG1、UME6 和 WOR3-它们在 efg1Δ/Δ 突变体中的表达增加恢复了多个间接和直接主要靶基因的表达,以及生物膜形成能力。虽然 BRG1 和 UME6 是菌丝相关基因和生物膜形成的众所周知的正调控因子,但 WOR3 作为性交配途径中 Efg1 的拮抗剂更为人所知。我们通过发现 wor3Δ/Δ 突变体在体外和体内生物膜模型中削弱生物膜形成,证实了 WOR3 在生物膜形成中的积极作用。其他 Efg1 直接靶基因-BRG1、UME6 和 WOR3-对 Efg1 直接靶基因的正向调控可能缓冲了主要的 Efg1 响应基因表达对白色念珠菌种内遗传变异的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/e2b22a3c4b22/ppat.1011109.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/4ecd7a997a69/ppat.1011109.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/555f7016e740/ppat.1011109.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/9e34ce9c30c5/ppat.1011109.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/7a6c94633f91/ppat.1011109.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/7a5c437d5a1d/ppat.1011109.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/b8dfa37152b1/ppat.1011109.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/1894395a9e58/ppat.1011109.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/a66a16aa32df/ppat.1011109.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/fd99d7747bee/ppat.1011109.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/03fc43d0089d/ppat.1011109.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/e2b22a3c4b22/ppat.1011109.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/4ecd7a997a69/ppat.1011109.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/555f7016e740/ppat.1011109.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/9e34ce9c30c5/ppat.1011109.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/7a6c94633f91/ppat.1011109.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/7a5c437d5a1d/ppat.1011109.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/b8dfa37152b1/ppat.1011109.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/1894395a9e58/ppat.1011109.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/a66a16aa32df/ppat.1011109.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/fd99d7747bee/ppat.1011109.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/03fc43d0089d/ppat.1011109.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/9901766/e2b22a3c4b22/ppat.1011109.g011.jpg

相似文献

[1]
Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network.

PLoS Pathog. 2023-1

[2]
Collaboration between Antagonistic Cell Type Regulators Governs Natural Variation in the Candida albicans Biofilm and Hyphal Gene Expression Network.

mBio. 2022-10-26

[3]
A Brg1-Rme1 circuit in hyphal gene regulation.

mBio. 2024-9-11

[4]
S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms.

Virulence. 2017-6-1

[5]
Circuit diversification in a biofilm regulatory network.

PLoS Pathog. 2019-5-22

[6]
Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms.

Eukaryot Cell. 2013-2

[7]
Regulatory features of Candida albicans hemin-induced filamentation.

G3 (Bethesda). 2024-5-7

[8]
Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans.

G3 (Bethesda). 2023-8-30

[9]
The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.

Mol Biol Cell. 2006-1

[10]
Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.

Int J Antimicrob Agents. 2009-10

引用本文的文献

[1]
Ume6 protein complexes connect morphogenesis, adherence and hypoxic genes to shape Candida albicans biofilm architecture.

Nat Microbiol. 2025-8-21

[2]
Control of citrate utilization by Adr1.

mSphere. 2025-7-29

[3]
Commensalism and pathogenesis of Candida albicans at the mucosal interface.

Nat Rev Microbiol. 2025-4-17

[4]
Transcriptional control of white-opaque switching and modulation by environmental cues and strain background.

mBio. 2025-5-14

[5]
Roles of P-body factors in filamentation and stress response.

bioRxiv. 2025-3-10

[6]
Roles of P-body factors in Candida albicans filamentation and stress response.

PLoS Genet. 2025-3-17

[7]
Fungal biofilms in human health and disease.

Nat Rev Microbiol. 2025-6

[8]
Strain-limited biofilm regulation through the Brg1-Rme1 circuit in .

mSphere. 2025-1-28

[9]
Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis.

Nat Commun. 2024-10-24

[10]
Strain variation in glycolytic gene regulation.

mSphere. 2024-11-21

本文引用的文献

[1]
Collaboration between Antagonistic Cell Type Regulators Governs Natural Variation in the Candida albicans Biofilm and Hyphal Gene Expression Network.

mBio. 2022-10-26

[2]
Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway .

mBio. 2022-6-28

[3]
, Everyone's Favorite Gene in : A Comprehensive Literature Review.

Front Cell Infect Microbiol. 2022

[4]
Tolerance and resistance of microbial biofilms.

Nat Rev Microbiol. 2022-10

[5]
Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity.

NPJ Biofilms Microbiomes. 2021-11-10

[6]
Coordination of fungal biofilm development by extracellular vesicle cargo.

Nat Commun. 2021-10-29

[7]
Intravital Imaging of Candida albicans Identifies Differential and Filamentation Phenotypes for Transcription Factor Deletion Mutants.

mSphere. 2021-6-30

[8]
Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism.

Cell Host Microbe. 2021-6-9

[9]
Culture, Cell Harvesting, and Total RNA Extraction.

Bio Protoc. 2020-11-5

[10]
Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis.

Cell Rep. 2021-2-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索