Suppr超能文献

对退伍军人事务部肺癌患者病历记录的情绪分析。

Sentiment analysis of medical record notes for lung cancer patients at the Department of Veterans Affairs.

机构信息

Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America.

VHA Boston CSP Informatics, Department of Veterans Affairs, Boston, MA, United States of America.

出版信息

PLoS One. 2023 Jan 25;18(1):e0280931. doi: 10.1371/journal.pone.0280931. eCollection 2023.

Abstract

Natural language processing of medical records offers tremendous potential to improve the patient experience. Sentiment analysis of clinical notes has been performed with mixed results, often highlighting the issue that dictionary ratings are not domain specific. Here, for the first time, we re-calibrate the labMT sentiment dictionary on 3.5M clinical notes describing 10,000 patients diagnosed with lung cancer at the Department of Veterans Affairs. The sentiment score of notes was calculated for two years after date of diagnosis and evaluated against a lab test (platelet count) and a combination of data points (treatments). We found that the oncology specific labMT dictionary, after re-calibration for the clinical oncology domain, produces a promising signal in notes that can be detected based on a comparative analysis to the aforementioned parameters.

摘要

病历的自然语言处理具有极大改善患者体验的潜力。对临床记录的情感分析取得了不同的结果,往往突出了词典评分不是特定于领域的问题。在这里,我们首次在 350 万份描述 10000 名退伍军人事务部肺癌患者的临床记录上重新校准了 labMT 情感词典。在诊断日期后的两年内计算了记录的情感评分,并与实验室测试(血小板计数)和数据点组合(治疗)进行了评估。我们发现,经过临床肿瘤学领域的重新校准,肿瘤学专用的 labMT 词典在可以根据与上述参数的比较分析检测到的记录中产生了有希望的信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验