Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
J Colloid Interface Sci. 2023 May;637:134-146. doi: 10.1016/j.jcis.2022.12.124. Epub 2022 Dec 24.
Gradients in the concentration of amphiphiles play an important role in many non-equilibrium processes involving complex fluids. Here we explore if non-equilibrium interfacial behaviors of thermotropic (oily) liquid crystals (LCs) can amplify microscopic gradients in surfactant concentration into macroscopic optical signals.
We use a milli-fluidic system to generate gradients in aqueous sodium dodecyl sulfate (SDS) concentration and optically quantify the dynamic ordering of micrometer-thick nematic LC films that contact the gradients.
We find that the reordering of the LCs is dominated by interfacial shearing by Marangoni flows, thus providing simple methods for rapid mapping of interfacial velocities from a single optical image and investigating the effects of confinement of surfactant-driven interfacial flows. Additionally, we establish that surface advection and surfactant desorption are the two key processes that regulate the interfacial flows, revealing that the dynamic response of the LC can provide rapid and potentially high throughput approaches to measurement of non-equilibrium interfacial properties of amphiphiles. We also observe flow-induced assemblies of microparticles to form at the LC interface, hinting at new non-equilibrium approaches to microparticle assembly. We conclude that dynamic states adopted by LCs in the presence of surfactant concentration gradients provide new opportunities for engineering complex fluids beyond equilibrium.
两亲物浓度梯度在涉及复杂流体的许多非平衡过程中起着重要作用。在这里,我们探索热致(油性)液晶 (LC) 的非平衡界面行为是否可以将表面活性剂浓度的微观梯度放大为宏观光学信号。
我们使用毫流体系统在水溶液中生成十二烷基硫酸钠 (SDS) 浓度梯度,并光学量化接触梯度的微米厚向列 LC 膜的动态有序性。
我们发现 LC 的重排主要由 Marangoni 流引起的界面剪切作用主导,从而为从单个光学图像快速映射界面速度提供了简单的方法,并研究了表面活性剂驱动的界面流限制的影响。此外,我们确定表面对流和表面活性剂解吸是调节界面流的两个关键过程,这表明 LC 的动态响应可以提供快速且具有潜在高通量的方法来测量两亲物的非平衡界面特性。我们还观察到微颗粒在 LC 界面处形成流动诱导组装,暗示了用于微颗粒组装的新非平衡方法。我们得出的结论是,在存在表面活性剂浓度梯度的情况下,LC 采用的动态状态为超越平衡的复杂流体工程提供了新的机会。