Roh Sangchul, Tsuei Michael, Abbott Nicholas L
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Langmuir. 2021 May 18;37(19):5810-5822. doi: 10.1021/acs.langmuir.1c00133. Epub 2021 May 5.
Flow-induced states of fluid interfaces decorated with amphiphiles underlie phenomena such as emulsification, foaming, and spreading. While past studies have shown that interfacial mass transfer, the kinetics of surfactant adsorption and desorption, interfacial mobility, and surfactant reorganization regulate the dynamic properties of surfactant-laden interfaces, few simple methods permit simultaneous monitoring of this interplay. Here, we explore the optical responses of micrometer-thick films of oils (4-cyano-4'-pentylbiphenyl, 5CB) with a liquid crystalline order in contact with flowing aqueous phases of soluble [e.g., sodium dodecyl sulfate (SDS)] or insoluble (e.g., 1,2-dilauroyl--glycero-3-phosphocholine) amphiphiles. We observe the onset of flow of 0.5 mM SDS solutions within a millifluidic channel (area-average velocity of 200 mm/s) to transform a liquid crystal (LC) film with an alignment along the interface normal into a bright birefringent state (average LC tilt angle of 30°), consistent with an initially mobile interface that shears and thus tilts the LC along the flow direction. Subsequently, we observed the LC film to evolve to a steady state (over ∼10 s) with position-dependent optical retardance controlled by gradients in surfactant concentration and thus Marangoni stresses. For 0.5 mM SDS solutions, by using particle tracking and a simple hydrodynamic model, we reveal that the dominant role of the flow-induced interfacial surfactant concentration gradient is to change the mobility of the interface (and thus shear rate of LC) and not to change the easy axis (equilibrium orientation) or anchoring energy (orientation-dependent interfacial energy) of the LC. At lower surfactant concentrations (0.015 mM SDS), however, we show that the LC directly maps flow-induced interfacial surfactant concentration gradients via a change in the local easy axis of the LC. When combined with additional measurements obtained with simple salts and insoluble amphiphiles, these results hint that LC oils may offer the basis of general and facile methods that permit mapping of both interfacial mobilities and surfactant distributions at flowing interfaces.
两亲分子修饰的流体界面的流动诱导状态是乳化、发泡和铺展等现象的基础。虽然过去的研究表明,界面传质、表面活性剂吸附和解吸的动力学、界面迁移率以及表面活性剂重组调节了负载表面活性剂的界面的动态特性,但很少有简单的方法能够同时监测这种相互作用。在这里,我们探索了具有液晶序的微米厚油膜(4-氰基-4'-戊基联苯,5CB)与可溶性[例如十二烷基硫酸钠(SDS)]或不溶性(例如1,2-二月桂酰-sn-甘油-3-磷酸胆碱)两亲分子的流动水相接触时的光学响应。我们观察到在微流体通道(面积平均速度为200 mm/s)中0.5 mM SDS溶液开始流动,将沿界面法线排列的液晶(LC)膜转变为明亮的双折射状态(平均LC倾斜角为30°),这与最初可移动的界面一致,该界面会剪切并因此使LC沿流动方向倾斜。随后,我们观察到LC膜在约10 s内演变为稳态,其位置相关的光学延迟由表面活性剂浓度梯度以及因此的马兰戈尼应力控制。对于0.5 mM SDS溶液,通过使用粒子跟踪和一个简单的流体动力学模型,我们发现流动诱导的界面表面活性剂浓度梯度的主要作用是改变界面的迁移率(从而改变LC的剪切速率),而不是改变LC的易轴(平衡取向)或锚定能(取向相关的界面能)。然而,在较低的表面活性剂浓度(0.015 mM SDS)下,我们表明LC通过改变LC的局部易轴直接映射流动诱导的界面表面活性剂浓度梯度。当与使用简单盐类和不溶性两亲分子获得的其他测量结果相结合时,这些结果表明LC油可能为通用且简便的方法提供基础,这些方法能够绘制流动界面处的界面迁移率和表面活性剂分布。