Suppr超能文献

用于高性能传感应用的指数调制纳米光子学谐振器。

Exponentially index modulated nanophotonic resonator for high-performance sensing applications.

机构信息

Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, 201309, India.

Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.

出版信息

Sci Rep. 2023 Jan 25;13(1):1431. doi: 10.1038/s41598-023-28235-6.

Abstract

In this manuscript, a novel photonic crystal resonator (PhCR) structure having an exponentially graded refractive index profile is proposed to regulate and alter the dispersion characteristics for the first time. The structure comprises silicon material, where porosity is deliberately introduced to modulate the refractive index profile locally. The structural parameters are optimized to have a resonant wavelength of 1550 nm. Further, the impact of various parameters like incidence angle, defect layer thickness, and analyte infiltration on device performance is evaluated. Finally, the sensing capability of the proposed structure is compared with the conventional step index-based devices. The proposed structure exhibits an average sensitivity of 54.16 nm/RIU and 500.12 nm/RIU for step index and exponentially graded index structures. This exhibits the generation of a lower energy resonating mode having 825% higher sensitivity than conventional resonator structures. Moreover, the graded index structures show a 45% higher field confinement than the conventional PhCR structure.

摘要

在本文中,首次提出了一种具有指数渐变折射率分布的新型光子晶体谐振器(PhCR)结构,用于调节和改变色散特性。该结构由硅材料组成,其中故意引入了孔隙度来局部调制折射率分布。优化了结构参数,以使谐振波长为 1550nm。此外,还评估了各种参数(如入射角、缺陷层厚度和分析物渗透)对器件性能的影响。最后,将所提出结构的传感能力与传统的阶跃指数基器件进行了比较。所提出的结构对于阶跃指数和指数渐变折射率结构分别表现出 54.16nm/RIU 和 500.12nm/RIU 的平均灵敏度。这表明与传统谐振器结构相比,产生了具有 825%更高灵敏度的较低能量谐振模式。此外,渐变指数结构比传统的 PhCR 结构具有 45%更高的场限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4690/9877018/6fb2587f0396/41598_2023_28235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验