Suppr超能文献

低温电镜快照的能量景观:基准研究。

Energy landscapes from cryo-EM snapshots: a benchmarking study.

机构信息

University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA.

出版信息

Sci Rep. 2023 Jan 25;13(1):1372. doi: 10.1038/s41598-023-28401-w.

Abstract

Biomolecules undergo continuous conformational motions, a subset of which are functionally relevant. Understanding, and ultimately controlling biomolecular function are predicated on the ability to map continuous conformational motions, and identify the functionally relevant conformational trajectories. For equilibrium and near-equilibrium processes, function proceeds along minimum-energy pathways on one or more energy landscapes, because higher-energy conformations are only weakly occupied. With the growing interest in identifying functional trajectories, the need for reliable mapping of energy landscapes has become paramount. In response, various data-analytical tools for determining structural variability are emerging. A key question concerns the veracity with which each data-analytical tool can extract functionally relevant conformational trajectories from a collection of single-particle cryo-EM snapshots. Using synthetic data as an independently known ground truth, we benchmark the ability of four leading algorithms to determine biomolecular energy landscapes and identify the functionally relevant conformational paths on these landscapes. Such benchmarking is essential for systematic progress toward atomic-level movies of continuous biomolecular function.

摘要

生物分子会发生连续的构象运动,其中一部分与功能相关。理解(并最终控制)生物分子的功能,需要能够描绘连续的构象运动,并识别出与功能相关的构象轨迹。对于平衡和近平衡过程,功能沿着一个或多个能量景观上的最低能量途径进行,因为高能构象仅被弱占据。随着识别功能轨迹的兴趣日益浓厚,对可靠绘制能量景观的需求变得至关重要。作为回应,用于确定结构可变性的各种数据分析工具正在出现。一个关键问题是,每个数据分析工具从一组单颗粒冷冻电镜快照中提取与功能相关的构象轨迹的准确性。我们使用合成数据作为独立的已知基准,来评估四种领先算法确定生物分子能量景观以及识别这些景观上与功能相关的构象路径的能力。这种基准测试对于朝着连续生物分子功能的原子级电影的系统进展是必不可少的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b7/9876912/c3307b8bdda5/41598_2023_28401_Fig1_HTML.jpg

相似文献

1
Energy landscapes from cryo-EM snapshots: a benchmarking study.
Sci Rep. 2023 Jan 25;13(1):1372. doi: 10.1038/s41598-023-28401-w.
4
Retrieving functional pathways of biomolecules from single-particle snapshots.
Nat Commun. 2020 Sep 18;11(1):4734. doi: 10.1038/s41467-020-18403-x.
5
Roodmus: a toolkit for benchmarking heterogeneous electron cryo-microscopy reconstructions.
IUCrJ. 2024 Nov 1;11(Pt 6):951-965. doi: 10.1107/S2052252524009321.
6
Estimating conformational landscapes from Cryo-EM particles by 3D Zernike polynomials.
Nat Commun. 2023 Jan 11;14(1):154. doi: 10.1038/s41467-023-35791-y.
7
X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future.
Biochemistry. 2018 Jan 23;57(3):277-285. doi: 10.1021/acs.biochem.7b01031. Epub 2018 Jan 11.
9
Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules.
Front Mol Biosci. 2021 Apr 5;8:641208. doi: 10.3389/fmolb.2021.641208. eCollection 2021.
10
Equilibrium Dynamics of a Biomolecular Complex Analyzed at Single-amino Acid Resolution by Cryo-electron Microscopy.
J Mol Biol. 2023 Apr 15;435(8):168024. doi: 10.1016/j.jmb.2023.168024. Epub 2023 Feb 23.

引用本文的文献

1
Roodmus: a toolkit for benchmarking heterogeneous electron cryo-microscopy reconstructions.
IUCrJ. 2024 Nov 1;11(Pt 6):951-965. doi: 10.1107/S2052252524009321.
2
Structural basis of closed groove scrambling by a TMEM16 protein.
Nat Struct Mol Biol. 2024 Oct;31(10):1468-1481. doi: 10.1038/s41594-024-01284-9. Epub 2024 Apr 29.
3
Structural basis of closed groove scrambling by a TMEM16 protein.
Res Sq. 2023 Aug 18:rs.3.rs-3256633. doi: 10.21203/rs.3.rs-3256633/v1.

本文引用的文献

1
Recovery of Conformational Continuum From Single-Particle Cryo-EM Images: Optimization of ManifoldEM Informed by Ground Truth.
IEEE Trans Comput Imaging. 2022;8:462-478. doi: 10.1109/tci.2022.3174801. Epub 2022 May 12.
2
Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM.
Nat Methods. 2021 Aug;18(8):930-936. doi: 10.1038/s41592-021-01220-5. Epub 2021 Jul 29.
3
3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM.
J Struct Biol. 2021 Jun;213(2):107702. doi: 10.1016/j.jsb.2021.107702. Epub 2021 Feb 11.
4
CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks.
Nat Methods. 2021 Feb;18(2):176-185. doi: 10.1038/s41592-020-01049-4. Epub 2021 Feb 4.
5
Retrieving functional pathways of biomolecules from single-particle snapshots.
Nat Commun. 2020 Sep 18;11(1):4734. doi: 10.1038/s41467-020-18403-x.
6
Cryo-EM, XFELs and the structure conundrum in structural biology.
Nat Methods. 2019 Oct;16(10):941-944. doi: 10.1038/s41592-019-0587-4.
8
Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM.
Methods. 2016 May 1;100:61-7. doi: 10.1016/j.ymeth.2016.02.007. Epub 2016 Feb 13.
9
Trajectories of the ribosome as a Brownian nanomachine.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17492-7. doi: 10.1073/pnas.1419276111. Epub 2014 Nov 24.
10
An iterative method for extracting energy-like quantities from protein structures.
Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11628-33. doi: 10.1073/pnas.93.21.11628.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验