Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Methods. 2021 Feb;18(2):176-185. doi: 10.1038/s41592-020-01049-4. Epub 2021 Feb 4.
Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset's distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu .
低温电子显微镜(cryo-EM)单颗粒分析已被证明在确定刚性大分子的结构方面非常有效。然而,许多成像的蛋白质复合物表现出构象和组成异质性,这对现有的三维重建方法构成了重大挑战。在这里,我们提出了 cryoDRGN,这是一种利用深度神经网络表示能力的算法,可以直接重建 3D 密度图的连续分布,并对单颗粒 cryo-EM 数据集的每个颗粒的异质性进行映射。使用 cryoDRGN,我们在 80S 核糖体和 RAG 复合物的高分辨率数据集上发现了残留的异质性,揭示了组装 50S 核糖体的新结构状态,并可视化了剪接体复合物的大规模连续运动。cryoDRGN 包含用于可视化数据集每个颗粒变异性分布的交互工具,生成用于探索性分析的密度图,提取用于其他工具的粒子子集,并生成轨迹以可视化分子运动。cryoDRGN 是一个开源软件,可在 http://cryodrgn.csail.mit.edu 免费获得。