Khan Mustafa, Hameed Asima, Samad Abdus, Mushiana Talifhani, Abdullah Muhammad Imran, Akhtar Asma, Ashraf Raja Shahid, Zhang Ning, Pollet Bruno G, Schwingenschlögl Udo, Ma Mingming
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Commun Chem. 2022 Sep 12;5(1):109. doi: 10.1038/s42004-022-00708-1.
Selective oxidation of low-molecular-weight aliphatic alcohols like methanol and ethanol into carboxylates in acid/base hybrid electrolytic cells offers reduced process operating costs for the generation of fuels and value-added chemicals, which is environmentally and economically more desirable than their full oxidation to CO. Herein, we report the in-situ fabrication of oxygen-vacancies-rich CuO nanosheets on a copper foam (CF) via a simple ultrasonication-assisted acid-etching method. The CuO/CF monolith electrode enables efficient and selective electrooxidation of ethanol and methanol into value-added acetate and formate with ~100% selectivity. First principles calculations reveal that oxygen vacancies in CuO nanosheets efficiently regulate the surface chemistry and electronic structure, provide abundant active sites, and enhance charge transfer that facilitates the adsorption of reactant molecules on the catalyst surface. The as-prepared CuO/CF monolith electrode shows excellent stability for alcohol oxidation at current densities >200 mA·cm for 24 h. Moreover, the abundant oxygen vacancies significantly enhance the intrinsic indicators of the catalyst in terms of specific activity and outstanding turnover frequencies of 5.8k s and 6k s for acetate and formate normalized by their respective faradaic efficiencies at an applied potential of 1.82 V vs. RHE.
在酸/碱混合电解池中,将甲醇和乙醇等低分子量脂肪醇选择性氧化为羧酸盐,可降低燃料和增值化学品生产过程中的运营成本,这在环境和经济方面比将它们完全氧化为二氧化碳更具优势。在此,我们报道了通过一种简单的超声辅助酸蚀刻方法,在泡沫铜(CF)上原位制备富含氧空位的CuO纳米片。CuO/CF整体电极能够将乙醇和甲醇高效且选择性地电氧化为增值的乙酸盐和甲酸盐,选择性约为100%。第一性原理计算表明,CuO纳米片中的氧空位有效地调节了表面化学和电子结构,提供了丰富的活性位点,并增强了电荷转移,促进了反应物分子在催化剂表面的吸附。所制备的CuO/CF整体电极在电流密度>200 mA·cm²下进行24小时的醇氧化反应时表现出优异的稳定性。此外,在相对于可逆氢电极(RHE)为1.82 V的外加电势下,丰富的氧空位以各自的法拉第效率归一化后,显著提高了催化剂在比活性和乙酸盐及甲酸盐分别为5.8 k s⁻¹和6 k s⁻¹的出色周转频率方面的本征指标。