Lian Zichao, Li Zhao, Wu Fan, Zhong Yueqi, Liu Yunni, Wang Wenchao, Zi Jiangzhi, Yang Weiwei
School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, P. R. China.
Commun Chem. 2022 Aug 6;5(1):93. doi: 10.1038/s42004-022-00713-4.
Efficient electron-hole separation and carrier utilization are key factors in photocatalytic systems. Here, we use a metal-organic framework (NH-UiO-66) modified with inner platinum nanoparticles and outer cadmium sulfide (CdS) nanoparticles to construct the ternary composite Pt@NH-UiO-66/CdS, which has a spatially separated, hierarchical structure for enhanced visible-light-driven hydrogen evolution. Relative to pure NH-UiO-66, Pt@NH-UiO-66, and NH-UiO-66/CdS samples, the Pt@NH-UiO-66/CdS composite exhibits much higher hydrogen yields with an apparent quantum efficiency of 40.3% at 400 nm irradiation and stability over the most MOF-based photocatalysts. Transient absorption measurements reveal spatial charge-separation dynamics in the composites. The catalyst's high activity and durability are attributed to charge separation following an efficient photogenerated hole-transfer band-trap pathway. This work holds promise for enhanced MOF-based photocatalysis using efficient hole-transfer routes.
高效的电子-空穴分离和载流子利用是光催化系统中的关键因素。在此,我们使用内部修饰有铂纳米颗粒且外部修饰有硫化镉(CdS)纳米颗粒的金属有机框架(NH-UiO-66)构建三元复合材料Pt@NH-UiO-66/CdS,其具有空间分离的分层结构,以增强可见光驱动的析氢反应。相对于纯NH-UiO-66、Pt@NH-UiO-66和NH-UiO-66/CdS样品,Pt@NH-UiO-66/CdS复合材料表现出更高的产氢量,在400nm光照下的表观量子效率为40.3%,并且比大多数基于金属有机框架的光催化剂具有更高的稳定性。瞬态吸收测量揭示了复合材料中的空间电荷分离动力学。该催化剂的高活性和耐久性归因于通过高效的光生空穴转移带陷阱途径实现的电荷分离。这项工作有望通过高效的空穴转移途径增强基于金属有机框架的光催化作用。