Suppr超能文献

作为具有增强亲电性的N-杂环卡宾配体用于过渡金属催化的噻唑-2-亚基

Thiazol-2-ylidenes as N-Heterocyclic carbene ligands with enhanced electrophilicity for transition metal catalysis.

作者信息

Zhang Jin, Li Tao, Li Xiangyang, Lv Anqi, Li Xue, Wang Zheng, Wang Ruihong, Ma Yangmin, Fang Ran, Szostak Roman, Szostak Michal

机构信息

College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China.

Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, 710021, China.

出版信息

Commun Chem. 2022 May 6;5(1):60. doi: 10.1038/s42004-022-00675-7.

Abstract

Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C-C and C-heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate that N-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis.

摘要

在过去20年里,N-杂环卡宾(NHCs)已成为过渡金属催化中配体发展的一个主导方向。特别是,强σ供电子作用与可调节的空间环境相结合,使NHCs成为用于碳-碳和碳-杂原子键形成的最常见配体之一。在此,我们报道了关于噻唑-2-亚基的空间和电子性质的研究。我们证明,噻唑杂环和增强的π亲电性导致一类用于亲电环化反应以形成有价值的恶唑啉杂环的高活性卡宾配体。本文介绍了对空间、供电子和π接受性质的评估以及结构表征和配位化学。这种催化模式可应用于后期药物功能化,为药物化学提供有吸引力的结构单元。考虑到N-杂环配体的关键作用,我们预计N-芳基噻唑-2-亚基作为现代化学合成中的配体将受到广泛关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd0/9814509/c46d5e99f606/42004_2022_675_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验