文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的放射组学方法预测 ER+/HER2-早期乳腺癌患者的肿瘤复发。

MRI-Based Radiomics Approach Predicts Tumor Recurrence in ER + /HER2 - Early Breast Cancer Patients.

机构信息

Advanced Computing Core, Center of Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.

Department of Innovative Technologies in Medicine and Odonoiatry, "G. d'Annunzio" University, Chieti, Italy.

出版信息

J Digit Imaging. 2023 Jun;36(3):1071-1080. doi: 10.1007/s10278-023-00781-5. Epub 2023 Jan 25.


DOI:10.1007/s10278-023-00781-5
PMID:36698037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10287859/
Abstract

Oncotype Dx Recurrence Score (RS) has been validated in patients with ER + /HER2 - invasive breast carcinoma to estimate patient risk of recurrence and guide the use of adjuvant chemotherapy. We investigated the role of MRI-based radiomics features extracted from the tumor and the peritumoral tissues to predict the risk of tumor recurrence. A total of 62 patients with biopsy-proved ER + /HER2 - breast cancer who underwent pre-treatment MRI and Oncotype Dx were included. An RS > 25 was considered discriminant between low-intermediate and high risk of tumor recurrence. Two readers segmented each tumor. Radiomics features were extracted from the tumor and the peritumoral tissues. Partial least square (PLS) regression was used as the multivariate machine learning algorithm. PLS β-weights of radiomics features included the 5% features with the largest β-weights in magnitude (top 5%). Leave-one-out nested cross-validation (nCV) was used to achieve hyperparameter optimization and evaluate the generalizable performance of the procedure. The diagnostic performance of the radiomics model was assessed through receiver operating characteristic (ROC) analysis. A null hypothesis probability threshold of 5% was chosen (p < 0.05). The exploratory analysis for the complete dataset revealed an average absolute correlation among features of 0.51. The nCV framework delivered an AUC of 0.76 (p = 1.1∙10). When combining "early" and "peak" DCE images of only T or TST, a tendency toward statistical significance was obtained for TST with an AUC of 0.61 (p = 0.05). The 47 features included in the top 5% were balanced between T and TST (23 and 24, respectively). Moreover, 33/47 (70%) were texture-related, and 25/47 (53%) were derived from high-resolution images (1 mm). A radiomics-based machine learning approach shows the potential to accurately predict the recurrence risk in early ER + /HER2 - breast cancer patients.

摘要

Oncotype DX 复发评分(RS)已在 ER+/HER2-浸润性乳腺癌患者中得到验证,可用于估计患者的复发风险并指导辅助化疗的应用。我们研究了从肿瘤和肿瘤周围组织中提取的基于 MRI 的放射组学特征在预测肿瘤复发风险方面的作用。共纳入 62 例经活检证实为 ER+/HER2-乳腺癌且接受术前 MRI 和 Oncotype DX 检查的患者。RS>25 被认为是肿瘤复发低-中危和高危的区分因素。两位读者分别对每个肿瘤进行分割。从肿瘤和肿瘤周围组织中提取放射组学特征。采用偏最小二乘法(PLS)回归作为多元机器学习算法。PLS β-权重包括幅度最大的 5%特征(前 5%)。采用留一法嵌套交叉验证(nCV)实现超参数优化,并评估该方法的泛化性能。通过接受者操作特征(ROC)分析评估放射组学模型的诊断性能。选择 5%的零假设概率阈值(p<0.05)。对完整数据集的探索性分析显示特征之间的平均绝对相关性为 0.51。nCV 框架得到的 AUC 为 0.76(p=1.1×10-6)。当仅结合 T 或 TST 的“早期”和“峰值”DCE 图像时,TST 的 AUC 获得了统计意义上的趋势,为 0.61(p=0.05)。前 5%包括的 47 个特征在 T 和 TST 之间平衡(分别为 23 和 24 个)。此外,33/47(70%)与纹理相关,25/47(53%)来自高分辨率图像(1mm)。基于放射组学的机器学习方法显示出准确预测早期 ER+/HER2-乳腺癌患者复发风险的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/986fbb2829ce/10278_2023_781_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/6e72233567df/10278_2023_781_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/e56207bcbd19/10278_2023_781_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/389724b2299c/10278_2023_781_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/986fbb2829ce/10278_2023_781_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/6e72233567df/10278_2023_781_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/e56207bcbd19/10278_2023_781_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/389724b2299c/10278_2023_781_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8fd/10287859/986fbb2829ce/10278_2023_781_Fig4_HTML.jpg

相似文献

[1]
MRI-Based Radiomics Approach Predicts Tumor Recurrence in ER + /HER2 - Early Breast Cancer Patients.

J Digit Imaging. 2023-6

[2]
Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2- Breast Cancer Quantified With 21-Gene Recurrence Score.

J Magn Reson Imaging. 2023-8

[3]
Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score.

J Magn Reson Imaging. 2018-8-21

[4]
Radiomics signature on 3T dynamic contrast-enhanced magnetic resonance imaging for estrogen receptor-positive invasive breast cancers: Preliminary results for correlation with Oncotype DX recurrence scores.

Medicine (Baltimore). 2019-6

[5]
Mammography-based radiomics for predicting the risk of breast cancer recurrence: a multicenter study.

Br J Radiol. 2021-11-1

[6]
Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach.

Medicine (Baltimore). 2024-8-16

[7]
Association between Oncotype DX recurrence score and dynamic contrast-enhanced MRI features in patients with estrogen receptor-positive HER2-negative invasive breast cancer.

Clin Imaging. 2021-7

[8]
MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays.

Radiology. 2016-11

[9]
Association between partial-volume corrected SUVmax and Oncotype DX recurrence score in early-stage, ER-positive/HER2-negative invasive breast cancer.

Eur J Nucl Med Mol Imaging. 2016-8

[10]
Radiomics-based machine learning differentiates "ground-glass" opacities due to COVID-19 from acute non-COVID-19 lung disease.

Sci Rep. 2021-8-26

引用本文的文献

[1]
MRI Radiomics Signatures of 21-Gene Recurrence Score for Predicting Survival in ER+/HER2- Breast Cancer.

Cancer Med. 2025-9

[2]
Radiomics Analysis of Breast MRI to Predict Oncotype Dx Recurrence Score: Systematic Review.

Diagnostics (Basel). 2025-4-22

[3]
Role of radiomics in predicting early disease recurrence in locally advanced breast cancer patients: integration of radiomic features and RECIST criteria.

Radiol Med. 2025-5

[4]
Harnessing artificial intelligence for predicting breast cancer recurrence: a systematic review of clinical and imaging data.

Discov Oncol. 2025-2-8

[5]
Intratumoral and peritumoral MRI-based radiomics for predicting extrapelvic peritoneal metastasis in epithelial ovarian cancer.

Insights Imaging. 2024-11-22

[6]
Development and validation of a clinical breast cancer tool for accurate prediction of recurrence.

NPJ Breast Cancer. 2024-6-15

[7]
Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study.

J Egypt Natl Canc Inst. 2024-6-10

[8]
Machine learning and new insights for breast cancer diagnosis.

J Int Med Res. 2024-4

本文引用的文献

[1]
MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer.

Sci Rep. 2021-3-8

[2]
Recommendations from the European Commission Initiative on Breast Cancer for multigene testing to guide the use of adjuvant chemotherapy in patients with early breast cancer, hormone receptor positive, HER-2 negative.

Br J Cancer. 2021-4

[3]
Electroencephalography-Derived Prognosis of Functional Recovery in Acute Stroke Through Machine Learning Approaches.

Int J Neural Syst. 2020-12

[4]
Radiomics: from qualitative to quantitative imaging.

Br J Radiol. 2020-2-26

[5]
Overview of radiomics in breast cancer diagnosis and prognostication.

Breast. 2019-11-6

[6]
Breast MRI: State of the Art.

Radiology. 2019-7-30

[7]
Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.

Ann Oncol. 2019-10-1

[8]
Radiomics signature on 3T dynamic contrast-enhanced magnetic resonance imaging for estrogen receptor-positive invasive breast cancers: Preliminary results for correlation with Oncotype DX recurrence scores.

Medicine (Baltimore). 2019-6

[9]
Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: ASCO Clinical Practice Guideline Update-Integration of Results From TAILORx.

J Clin Oncol. 2019-5-31

[10]
Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer.

JAMA Netw Open. 2019-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索