Suppr超能文献

放射组学:从定性成像到定量成像。

Radiomics: from qualitative to quantitative imaging.

机构信息

The D-Lab & The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.

Department of Thoracic Oncology, IRCCS Foundation National Cancer Institute, Milan, Italy.

出版信息

Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.

Abstract

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms "handcrafted and deep," is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.

摘要

从历史上看,医学成像一直是一种定性或半定量的方式。很难将图像中看到的内容量化,并将其转化为有价值的预测结果。由于计算硬件和机器学习算法的进步,计算机在从成像中获取定量信息并将其与结果相关联方面取得了重大进展。放射组学有“手工制作”和“深度学习”两种形式,是一个新兴领域,它将医学图像转化为定量数据,以产生生物学信息,并实现放射表型分析,用于诊断、治疗反应、决策支持和监测。手工放射组学是一个多阶段的过程,在此过程中,从射线照片中提取基于形状、像素强度和纹理的特征。在这篇综述中,我们描述了以下步骤:从定量成像数据开始,如何提取它,如何将其与临床和生物学结果相关联,从而产生可用于进行预测的模型,例如生存预测,或用于诊断中的检测和分类。还讨论了放射组学的第二部分——深度学习及其在放射组学工作流程中的位置,以及它的优缺点。为了更好地说明正在使用的技术,我们提供了放射组学在肿瘤学中的实际临床应用,展示了放射组学应用的研究,并涵盖了其局限性和未来方向。

相似文献

1
Radiomics: from qualitative to quantitative imaging.放射组学:从定性成像到定量成像。
Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.
3
Potential and limitations of radiomics in neuro-oncology.放射组学在神经肿瘤学中的潜力和局限性。
J Clin Neurosci. 2021 Aug;90:206-211. doi: 10.1016/j.jocn.2021.05.015. Epub 2021 Jun 11.
4
Radiomics: A primer for the radiation oncologist.放射组学:放射肿瘤学家入门指南。
Cancer Radiother. 2020 Aug;24(5):403-410. doi: 10.1016/j.canrad.2020.01.011. Epub 2020 Apr 4.
8
A deep look into radiomics.深入探讨放射组学。
Radiol Med. 2021 Oct;126(10):1296-1311. doi: 10.1007/s11547-021-01389-x. Epub 2021 Jul 2.
9
Machine learning for radiomics-based multimodality and multiparametric modeling.基于影像组学的多模态和多参数建模的机器学习
Q J Nucl Med Mol Imaging. 2019 Dec;63(4):323-338. doi: 10.23736/S1824-4785.19.03213-8. Epub 2019 Sep 13.
10
The Emerging Role of Radiomics in COPD and Lung Cancer.放射组学在 COPD 和肺癌中的新兴作用。
Respiration. 2020;99(2):99-107. doi: 10.1159/000505429. Epub 2020 Jan 28.

引用本文的文献

本文引用的文献

1
The Emerging Role of Radiomics in COPD and Lung Cancer.放射组学在 COPD 和肺癌中的新兴作用。
Respiration. 2020;99(2):99-107. doi: 10.1159/000505429. Epub 2020 Jan 28.
6
Radiomics Analysis for Clinical Decision Support in Nuclear Medicine.放射组学分析在核医学临床决策支持中的应用。
Semin Nucl Med. 2019 Sep;49(5):438-449. doi: 10.1053/j.semnuclmed.2019.06.005. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验