Suppr超能文献

斯坦福B型主动脉夹层患者院内死亡预后动态列线图的开发与验证

Develop ment and validation of a prognostic dynamic nomogram for in-hospital mortality in patients with Stanford type B aortic dissection.

作者信息

Yang Lin, Wang Yasong, He Xiaofeng, Liu Xuanze, Sui Honggang, Wang Xiaozeng, Wang Mengmeng

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China.

Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.

出版信息

Front Cardiovasc Med. 2023 Jan 9;9:1099055. doi: 10.3389/fcvm.2022.1099055. eCollection 2022.

Abstract

BACKGROUND

This study aimed to identify the risk factors for in-hospital mortality in patients with Stanford type B aortic dissection (TBAD) and develop and validate a prognostic dynamic nomogram for in-hospital mortality in these patients.

METHODS

This retrospective study involved patients with TBAD treated from April 2002 to December 2020 at the General Hospital of Northern Theater Command. The patients with TBAD were divided into survival and non-survival groups. The data were analyzed by univariate and multivariate logistic regression analyses. To identify independent risk factors for in-hospital mortality, multivariate logistic regression analysis, least absolute shrinkage, and selection operator regression were used. A prediction model was constructed using a nomogram based on these factors and validated using the original data set. To assess its discriminative ability, the area under the receiver operating characteristic curve (AUC) was calculated, and the calibration ability was tested using a calibration curve and the Hosmer-Lemeshow test. Clinical utility was evaluated using decision curve analysis (DCA) and clinical impact curves (CIC).

RESULTS

Of the 978 included patients, 52 (5.3%) died in hospital. The following variables helped predict in-hospital mortality: pleural effusion, systolic blood pressure ≥160 mmHg, heart rate >100 bpm, anemia, ischemic cerebrovascular disease, abnormal cTnT level, and estimated glomerular filtration rate <60 ml/min. The prediction model demonstrated good discrimination [AUC = 0.894; 95% confidence interval (CI), 0.850-0.938]. The predicted probabilities of in-hospital death corresponded well to the actual prevalence rate [calibration curve: 1,000 bootstrap resamples, a bootstrap-corrected Harrell's concordance index of 0.905 (95% CI, 0.865-0.945), and the Hosmer-Lemeshow test (χ = 8.3334, = 0.4016)]. DCA indicated that when the risk threshold was set between 0.04 and 0.88, the predictive model could achieve larger clinical net benefits than "no intervention" or "intervention for all" options. Moreover, CIC showed good predictive ability and clinical utility for the model.

CONCLUSION

We developed and validated prediction nomograms, including a simple bed nomogram and online dynamic nomogram, that could be used to identify patients with TBAD at higher risk of in-hospital mortality, thereby better enabling clinicians to provide individualized patient management and timely and effective interventions.

摘要

背景

本研究旨在确定 Stanford B 型主动脉夹层(TBAD)患者院内死亡的危险因素,并开发和验证这些患者院内死亡的预后动态列线图。

方法

本回顾性研究纳入了 2002 年 4 月至 2020 年 12 月在北部战区总医院接受治疗的 TBAD 患者。将 TBAD 患者分为存活组和非存活组。采用单因素和多因素逻辑回归分析对数据进行分析。为了确定院内死亡的独立危险因素,使用了多因素逻辑回归分析、最小绝对收缩和选择算子回归。基于这些因素构建了列线图预测模型,并使用原始数据集进行验证。为了评估其判别能力,计算了受试者操作特征曲线(AUC)下的面积,并使用校准曲线和 Hosmer-Lemeshow 检验测试了校准能力。使用决策曲线分析(DCA)和临床影响曲线(CIC)评估临床实用性。

结果

在纳入的 978 例患者中,52 例(5.3%)在医院死亡。以下变量有助于预测院内死亡:胸腔积液、收缩压≥160 mmHg、心率>100 次/分钟、贫血、缺血性脑血管疾病、cTnT 水平异常以及估计肾小球滤过率<60 ml/min。预测模型显示出良好的判别能力[AUC = 0.894;95%置信区间(CI),0.850 - 0.938]。院内死亡的预测概率与实际患病率相符[校准曲线:1000 次自抽样重采样,自抽样校正的 Harrell 一致性指数为 0.905(95%CI,0.865 - 0.945),以及 Hosmer-Lemeshow 检验(χ = 8.3334,P = 0.4016)]。DCA 表明,当风险阈值设定在 0.04 至 0.88 之间时,预测模型比“不干预”或“全部干预”选项能获得更大的临床净效益。此外,CIC 显示该模型具有良好的预测能力和临床实用性。

结论

我们开发并验证了预测列线图,包括简单的床旁列线图和在线动态列线图,可用于识别 TBAD 患者中院内死亡风险较高的患者,从而更好地使临床医生能够提供个体化的患者管理以及及时有效的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/9868166/fcd1a530caa2/fcvm-09-1099055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验