Suppr超能文献

:对连接读长测序数据进行快速且可扩展的反卷积分析

: fast and scalable deconvolution of linked-read sequencing data.

作者信息

Faure Roland, Lavenier Dominique

机构信息

INRIA RBA, CNRS UMR 6074, University of Rennes, Rennes, France.

出版信息

Bioinform Adv. 2022 Sep 26;2(1):vbac068. doi: 10.1093/bioadv/vbac068. eCollection 2022.

Abstract

MOTIVATION

Recently introduced, linked-read technologies, such as the 10× chromium system, use microfluidics to tag multiple short reads from the same long fragment (50-200 kb) with a small sequence, called a . They are inexpensive and easy to prepare, combining the accuracy of short-read sequencing with the long-range information of barcodes. The same barcode can be used for several different fragments, which complicates the analyses.

RESULTS

We present (QD), a new software for a set of reads sharing a barcode, i.e. separating the reads from the different fragments. QD only takes sequencing data as input, without the need for a reference genome. We show that QD outperforms existing software in terms of accuracy, speed and scalability, making it capable of deconvolving previously inaccessible data sets. In particular, we demonstrate here the first example in the literature of a successfully deconvoluted animal sequencing dataset, a 33-Gb dataset. We show that the taxonomic assignment of linked reads can be improved by deconvoluting reads with QD before taxonomic classification.

AVAILABILITY AND IMPLEMENTATION

Code and instructions are available on https://github.com/RolandFaure/QuickDeconvolution.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

动机

最近推出的连接读取技术,如10×铬系统,利用微流体技术用一个短序列(称为条码)标记来自同一长片段(50 - 200 kb)的多个短读段。它们成本低廉且易于制备,将短读测序的准确性与条码的长程信息相结合。同一个条码可用于几个不同的片段,这使得分析变得复杂。

结果

我们提出了QD(快速解卷积),这是一种用于对共享一个条码的一组读段进行解卷积,即从不同片段中分离读段的新软件。QD仅将测序数据作为输入,无需参考基因组。我们表明,QD在准确性、速度和可扩展性方面优于现有软件,使其能够对以前无法处理的数据集进行解卷积。特别是,我们在此展示了文献中第一个成功解卷积的动物测序数据集的例子,一个33 - Gb的数据集。我们表明,在进行分类学分类之前,通过用QD对读段进行解卷积,可以改进连接读段的分类学分配。

可用性和实现方式

代码和说明可在https://github.com/RolandFaure/QuickDeconvolution上获取。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0f/9710601/7a45999d00c5/vbac068f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验