Suppr超能文献

海洋鱼类的全球深度范围及其环境DNA宏条形码分析的遗传覆盖范围。

The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding.

作者信息

Duhamet Agnès, Albouy Camille, Marques Virginie, Manel Stephanie, Mouillot David

机构信息

MARBEC Univ Montpellier, CNRS, IRD, Ifremer Montpellier France.

CEFE Univ Montpellier, CNRS, EPHE-PSL University, IRD Montpellier France.

出版信息

Ecol Evol. 2023 Jan 18;13(1):e9672. doi: 10.1002/ece3.9672. eCollection 2023 Jan.

Abstract

The bathymetric and geographical distribution of marine species represent a key information in biodiversity conservation. Yet, deep-sea ecosystems are among the least explored on Earth and are increasingly impacted by human activities. Environmental DNA (eDNA) metabarcoding has emerged as a promising method to study fish biodiversity but applications to the deep-sea are still scarce. A major limitation in the application of eDNA metabarcoding is the incompleteness of species sequences available in public genetic databases which reduces the extent of detected species. This incompleteness by depth is still unknown. Here, we built the global bathymetric and geographical distribution of 10,826 actinopterygian and 960 chondrichthyan fish species. We assessed their genetic coverage by depth and by ocean for three main metabarcoding markers used in the literature: teleo and MiFish-U/E. We also estimated the number of primer mismatches per species amplified by in silico polymerase chain reaction which influence the probability of species detection. Actinopterygians show a stronger decrease in species richness with depth than Chondrichthyans. These richness gradients are accompanied by a continuous species turnover between depths. Fish species coverage with the MiFish-U/E markers is higher than with teleo while threatened species are more sequenced than the others. "Deep-endemic" species, those not ascending to the shallow depth layer, are less sequenced than not threatened species. The number of primer mismatches is not higher for deep-sea species than for shallower ones. eDNA metabarcoding is promising for species detection in the deep-sea to better account for the 3-dimensional structure of the ocean in marine biodiversity monitoring and conservation. However, we argue that sequencing efforts on "deep-endemic" species are needed.

摘要

海洋物种的测深和地理分布是生物多样性保护中的关键信息。然而,深海生态系统是地球上探索最少的区域之一,且正日益受到人类活动的影响。环境DNA(eDNA)宏条形码技术已成为研究鱼类生物多样性的一种有前景的方法,但在深海中的应用仍然很少。eDNA宏条形码技术应用的一个主要限制是公共遗传数据库中可用物种序列的不完整性,这降低了检测到的物种范围。这种按深度划分的不完整性仍然未知。在这里,我们构建了10826种辐鳍鱼类和960种软骨鱼类的全球测深和地理分布。我们通过深度和海洋评估了文献中使用的三种主要宏条形码标记(teleo和MiFish-U/E)的遗传覆盖率。我们还通过计算机模拟聚合酶链反应估计了每个物种的引物错配数,这会影响物种检测的概率。辐鳍鱼类的物种丰富度随深度的下降比软骨鱼类更强烈。这些丰富度梯度伴随着不同深度之间持续的物种更替。使用MiFish-U/E标记的鱼类物种覆盖率高于teleo,而受威胁物种的测序数量比其他物种更多。“深度特有”物种,即那些不上升到浅深度层的物种,其测序数量比未受威胁物种少。深海物种的引物错配数并不比浅海物种更高。eDNA宏条形码技术在深海物种检测方面很有前景,以便在海洋生物多样性监测和保护中更好地考虑海洋的三维结构。然而,我们认为需要对“深度特有”物种进行测序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/9846838/d3b8d73da85a/ECE3-13-e9672-g002.jpg

相似文献

1
The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding.
Ecol Evol. 2023 Jan 18;13(1):e9672. doi: 10.1002/ece3.9672. eCollection 2023 Jan.
2
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
3
Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes.
PLoS One. 2020 Nov 4;15(11):e0236540. doi: 10.1371/journal.pone.0236540. eCollection 2020.
5
Integrating invasive species risk assessment into environmental DNA metabarcoding reference libraries.
Ecol Appl. 2023 Jan;33(1):e2730. doi: 10.1002/eap.2730. Epub 2022 Nov 2.
7
Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish.
MethodsX. 2021 Jan 23;8:101238. doi: 10.1016/j.mex.2021.101238. eCollection 2021.
8
Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks.
Ecol Evol. 2021 May 16;11(12):8281-8294. doi: 10.1002/ece3.7658. eCollection 2021 Jun.
9
Use of environmental DNA in assessment of fish functional and phylogenetic diversity.
Conserv Biol. 2021 Dec;35(6):1944-1956. doi: 10.1111/cobi.13802. Epub 2021 Sep 16.

引用本文的文献

1
Evolution of the Nonvisual and Visual Opsin Gene Repertoire in Ray-Finned Fishes.
Genome Biol Evol. 2025 Jul 3;17(7). doi: 10.1093/gbe/evaf129.
2
Functional diversity shapes the stability of reef fish biomass under global change.
Proc Biol Sci. 2025 May;292(2046):20250252. doi: 10.1098/rspb.2025.0252. Epub 2025 May 14.

本文引用的文献

1
Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishes.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2123544119. doi: 10.1073/pnas.2123544119. Epub 2022 Oct 17.
2
Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding.
Proc Biol Sci. 2022 Apr 27;289(1973):20220162. doi: 10.1098/rspb.2022.0162. Epub 2022 Apr 20.
3
eDNA captures depth partitioning in a kelp forest ecosystem.
PLoS One. 2021 Nov 4;16(11):e0253104. doi: 10.1371/journal.pone.0253104. eCollection 2021.
4
Overfishing drives over one-third of all sharks and rays toward a global extinction crisis.
Curr Biol. 2021 Nov 8;31(21):4773-4787.e8. doi: 10.1016/j.cub.2021.08.062. Epub 2021 Sep 6.
5
Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities.
Ann Rev Mar Sci. 2022 Jan 3;14:161-185. doi: 10.1146/annurev-marine-041421-082251. Epub 2021 Aug 5.
9
Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes.
PLoS One. 2020 Nov 4;15(11):e0236540. doi: 10.1371/journal.pone.0236540. eCollection 2020.
10
Area-based conservation in the twenty-first century.
Nature. 2020 Oct;586(7828):217-227. doi: 10.1038/s41586-020-2773-z. Epub 2020 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验