Chun Byeong J, Aryal Surya P, Varughese Peter, Sun Bin, Bruno Joshua A, Richards Chris I, Bachstetter Adam D, Kekenes-Huskey Peter M
Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States.
Department of Chemistry, University of Kentucky, Lexington, KY, United States.
Front Physiol. 2023 Jan 9;13:1037417. doi: 10.3389/fphys.2022.1037417. eCollection 2022.
Adenosine triphosphate (ATP) and its metabolites drive microglia migration and cytokine production by activating P2X- and P2Y- class purinergic receptors. Purinergic receptor activation gives rise to diverse intracellular calcium (Ca2+ signals, or waveforms, that differ in amplitude, duration, and frequency. Whether and how these characteristics of diverse waveforms influence microglia function is not well-established. We developed a computational model trained with data from published primary murine microglia studies. We simulate how purinoreceptors influence Ca2+ signaling and migration, as well as, how purinoreceptor expression modifies these processes. Our simulation confirmed that P2 receptors encode the amplitude and duration of the ATP-induced Ca2+ waveforms. Our simulations also implicate CD39, an ectonucleotidase that rapidly degrades ATP, as a regulator of purinergic receptor-induced Ca2+ responses. Namely, it was necessary to account for CD39 metabolism of ATP to align the model's predicted purinoreceptor responses with published experimental data. In addition, our modeling results indicate that small Ca2+ transients accompany migration, while large and sustained transients are needed for cytokine responses. Lastly, as a proof-of-principal, we predict Ca2+ transients and cell membrane displacements in a BV2 microglia cell line using published P2 receptor mRNA data to illustrate how our computer model may be extrapolated to other microglia subtypes. These findings provide important insights into how differences in purinergic receptor expression influence microglial responses to ATP.
三磷酸腺苷(ATP)及其代谢产物通过激活P2X和P2Y类嘌呤能受体来驱动小胶质细胞迁移和细胞因子产生。嘌呤能受体激活会引发多种细胞内钙(Ca2+)信号,即波形,其在幅度、持续时间和频率上存在差异。这些不同波形的特征是否以及如何影响小胶质细胞功能尚未明确。我们开发了一个基于已发表的原代小鼠小胶质细胞研究数据训练的计算模型。我们模拟嘌呤受体如何影响Ca2+信号传导和迁移,以及嘌呤受体表达如何改变这些过程。我们的模拟证实P2受体编码ATP诱导的Ca2+波形的幅度和持续时间。我们的模拟还表明,CD39(一种能快速降解ATP的外切核苷酸酶)是嘌呤能受体诱导的Ca2+反应的调节因子。也就是说,有必要考虑ATP的CD39代谢,以使模型预测的嘌呤受体反应与已发表的实验数据一致。此外,我们的建模结果表明,小的Ca2+瞬变伴随着迁移,而细胞因子反应则需要大的且持续的瞬变。最后,作为原理验证,我们使用已发表的P2受体mRNA数据预测BV2小胶质细胞系中的Ca2+瞬变和细胞膜位移,以说明我们的计算机模型如何外推到其他小胶质细胞亚型。这些发现为嘌呤能受体表达差异如何影响小胶质细胞对ATP的反应提供了重要见解。
J Physiol. 2018-12-17
Proc Natl Acad Sci U S A. 2021-4-27
Int J Mol Sci. 2021-2-6
Int J Mol Sci. 2020-11-13