Suppr超能文献

评估可再生能源和技术创新在降低 CO 排放中的作用:小波相干方法。

Evaluating the role of renewable energy and technology innovations in lowering CO emission: a wavelet coherence approach.

机构信息

Remote Sensing, GIS and Climatic Research Lab, National Center of GIS and Space Applications, Centre for Remote Sensing, University of Punjab, New Campus, Lahore, Pakistan.

Department of Political Science, University of Management and Technology, Lahore, Pakistan.

出版信息

Environ Sci Pollut Res Int. 2023 Mar;30(15):44914-44927. doi: 10.1007/s11356-023-25379-w. Epub 2023 Jan 26.

Abstract

Environmental sustainability is one of the most critical issues that require efficient environmental and economic policies in modern times. Advancements in renewables and green technologies contribute significantly to sustained long-term development without affecting environmental quality. Several studies focus on the association of carbon dioxide emissions (COe) with economic variables. However, they ignored the impact of technological innovations and renewable energy consumption on COe in developed countries. Therefore, this study examines the relationship between COe, energy consumption, gross domestic product (GDP), renewable energy consumption, and technology innovations in G-7 countries by employing cross-sectionally augmented autoregressive distributed (CS-ARDL) lag and wavelet coherence techniques during 1990-2020. The results depict that GDP and renewable energy consumption are inversely related to COe. A 1% increase in COe will decrease GDP and renewable energy consumption by 0.459 and 0.172% in the long run and by 0.471 and 0.183% in the short run in G7 countries. Technology innovations negatively impact COe in the short run while positively influencing it in the long run. Considering the advancements in green technologies in different energy-dependent and manufacturing sectors is crucial for a sustainable environment in the long run. Such initiatives ensure the effective use of energy sources by limiting COe in the atmosphere. Moreover, the dynamic common correlated effects mean group model confirms the reliability and effectiveness of the CS-ARDL. The wavelet coherence approach revealed a causality relation between CO2e and technology innovation in Italy, Japan, the UK, and the USA during the study period.

摘要

环境可持续性是现代社会最关键的问题之一,需要制定有效的环境和经济政策。可再生能源和绿色技术的进步对可持续的长期发展有重大贡献,同时不会影响环境质量。一些研究侧重于二氧化碳排放(COe)与经济变量之间的关系。然而,它们忽略了技术创新和可再生能源消费对发达国家 COe 的影响。因此,本研究通过使用横截面自回归分布滞后(CS-ARDL)和小波相干技术,在 1990-2020 年期间,检验了 G-7 国家 COe、能源消费、国内生产总值(GDP)、可再生能源消费和技术创新之间的关系。结果表明,GDP 和可再生能源消费与 COe 呈负相关。COe 增加 1%,将导致 G7 国家的 GDP 和可再生能源消费在长期内分别减少 0.459%和 0.172%,在短期内分别减少 0.471%和 0.183%。技术创新在短期内对 COe 产生负面影响,而在长期内则产生积极影响。考虑到不同能源依赖型和制造业部门绿色技术的进步,从长远来看,对于环境的可持续性至关重要。这些举措通过限制大气中的 COe,确保了能源的有效利用。此外,动态共同相关效应均值组模型证实了 CS-ARDL 的可靠性和有效性。小波相干方法揭示了研究期间意大利、日本、英国和美国 CO2e 与技术创新之间存在因果关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验