School of Physics and Materials Science, Guangzhou University, 510006 Guangzhou, People's Republic of China.
Huangpu Research and Graduate School of Guangzhou University, 510700 Guangzhou, People's Republic of China.
J Phys Condens Matter. 2023 Feb 6;35(13). doi: 10.1088/1361-648X/acb67c.
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang2020196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak atg∼0of the critical distribution and the largelimit of the universal scaling functionresemble those behaviors of three-dimensional disordered systems.
一个具有镶嵌类准周期势的一维晶格模型被发现具有有趣的局域化性质,例如清晰的迁移边(Wang2020196604)。我们将这个镶嵌类准周期模型推广到二维版本,并数值研究了它的局域化性质:从波函数分形维数、电导的统计和标度性质得到的相图。与无序系统相比,我们的模型具有许多共同的特征,但在相同的维度和相同的通用类中也表现出一些不同的特征。例如,临界分布中在g∼0处的尖锐峰值和通用标度函数的大极限类似于三维无序系统的行为。