Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev Lett. 2018 Apr 27;120(17):175702. doi: 10.1103/PhysRevLett.120.175702.
Unlike random potentials, quasiperiodic modulation can induce localization-delocalization transitions in one dimension. In this Letter, we analyze the implications of this for symmetry breaking in the quasiperiodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localized and gapless. The quasiperiodic potential and localized excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of ν=1^{+} (exact) and z≈1.9, Δ_{σ}≈0.16, and Δ_{γ}≈0.63 (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient w controls the universality class of the quasiperiodic transition and show its stability to smooth perturbations that preserve the quasiperiodic structure of the model.
与随机势不同,准周期调制可以在一维中诱导局域-离域转变。在这封信中,我们分析了这对准周期调制量子伊辛链中对称破缺的影响。尽管弱调制是无关紧要的,但强调制会诱导出全新的铁磁和顺磁相,这些相是完全局域化的且无能隙。准周期势和局域激发导致量子临界点,其介于干净和随机无序模型之间,指数为 ν=1^{+}(精确)和 z≈1.9、Δ_{σ}≈0.16、Δ_{γ}≈0.63(最多对数修正)。从技术上讲,干净伊辛转变被局部简化耦合的对数游走所破坏。我们推测游走系数 w 控制准周期转变的通用类,并展示了其对保持模型准周期结构的平滑微扰的稳定性。