Suppr超能文献

时滞脉冲随机离散不确定神经网络的鲁棒指数稳定性。

Robust exponential stability of discrete-time uncertain impulsive stochastic neural networks with delayed impulses.

机构信息

School of Mathematical Sciences, Anhui University, Hefei 230601, China.

School of Mathematical Sciences, Anhui University, Hefei 230601, China.

出版信息

Neural Netw. 2023 Mar;160:227-237. doi: 10.1016/j.neunet.2023.01.016. Epub 2023 Jan 21.

Abstract

This paper is devoted to the study of the robust exponential stability (RES) of discrete-time uncertain impulsive stochastic neural networks (DTUISNNs) with delayed impulses. Using Lyapunov function methods and Razumikhin techniques, a number of sufficient conditions for mean square (RES-ms) robust exponential stability are derived. The obtained results show that the hybrid dynamic is RES-ms with regard to lower boundary of impulse interval if the discrete-time stochastic neural networks (DTSNNs) is RES-ms and that the impulsive effects are instable. Conversely, if DTSNNs is not RES-ms, impulsive effects can induce unstable neural networks (NNs) to stabilize again concerning an upper bound of the impulsive interval. The results obtained in this study have a broader scope of application than some previously existing findings. Two numerical examples were presented to verify the availability and advantages of the results.

摘要

本文致力于研究具有时滞脉冲的离散时间不确定脉冲随机神经网络(DTUISNNs)的鲁棒指数稳定性(RES)。利用 Lyapunov 函数方法和 Razumikhin 技术,得到了均方(RES-ms)鲁棒指数稳定性的一些充分条件。所得结果表明,如果离散时间随机神经网络(DTSNNs)是 RES-ms 且脉冲效应不稳定,则混合动态是关于脉冲间隔下界的 RES-ms。相反,如果 DTSNNs 不是 RES-ms,则脉冲效应可以再次使不稳定的神经网络(NNs)稳定,这与脉冲间隔的上界有关。与一些先前存在的发现相比,本研究得到的结果具有更广泛的应用范围。提出了两个数值示例来验证结果的有效性和优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验