School of Mathematical Sciences, Anhui University, Hefei 230601, China.
School of Mathematical Sciences, Anhui University, Hefei 230601, China.
Neural Netw. 2023 Mar;160:227-237. doi: 10.1016/j.neunet.2023.01.016. Epub 2023 Jan 21.
This paper is devoted to the study of the robust exponential stability (RES) of discrete-time uncertain impulsive stochastic neural networks (DTUISNNs) with delayed impulses. Using Lyapunov function methods and Razumikhin techniques, a number of sufficient conditions for mean square (RES-ms) robust exponential stability are derived. The obtained results show that the hybrid dynamic is RES-ms with regard to lower boundary of impulse interval if the discrete-time stochastic neural networks (DTSNNs) is RES-ms and that the impulsive effects are instable. Conversely, if DTSNNs is not RES-ms, impulsive effects can induce unstable neural networks (NNs) to stabilize again concerning an upper bound of the impulsive interval. The results obtained in this study have a broader scope of application than some previously existing findings. Two numerical examples were presented to verify the availability and advantages of the results.
本文致力于研究具有时滞脉冲的离散时间不确定脉冲随机神经网络(DTUISNNs)的鲁棒指数稳定性(RES)。利用 Lyapunov 函数方法和 Razumikhin 技术,得到了均方(RES-ms)鲁棒指数稳定性的一些充分条件。所得结果表明,如果离散时间随机神经网络(DTSNNs)是 RES-ms 且脉冲效应不稳定,则混合动态是关于脉冲间隔下界的 RES-ms。相反,如果 DTSNNs 不是 RES-ms,则脉冲效应可以再次使不稳定的神经网络(NNs)稳定,这与脉冲间隔的上界有关。与一些先前存在的发现相比,本研究得到的结果具有更广泛的应用范围。提出了两个数值示例来验证结果的有效性和优势。