Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea.
The graduate school of construction engineering, Chung-ang University, Seoul, 06974, Republic of Korea.
Water Res. 2023 Mar 1;231:119654. doi: 10.1016/j.watres.2023.119654. Epub 2023 Jan 22.
In a hydrogen-based membrane biofilm reactor (H-MBfR), the biofilm thickness is considered to be one of the most important factors for denitrification. Thick biofilms in MBfRs are known for low removal fluxes owing to their resistance to substrate transport. In this study, the H-MBfR was operated under various loading rates of oxyanions, such as NO-N, SO-S, and ClO at an H flux of 1.06 e eq/m-d. The experiment was initiated with NO-N, SO-S, and ClO loadings of 0.464, 0.026, and 0.211 e eq/m-d, respectively, at 20 °C. Under the most stressful conditions, the loading rates increased simultaneously to 1.911, 0.869, and 0.108 e eq/m-d, respectively, at 10 °C. We observed improved performance in significantly thicker biofilms (approximately 2.7 cm) compared to previous studies using a denitrifying H-MBfR for 120 days. Shock oxyanion loadings led to a decrease in total nitrogen (TN) removal by 20 to 30%, but TN removal returned to 100% within a few days. Similarly, complete denitrification was observed, even at 10 °C. The protective function and microbial diversity of the thick biofilm may allow stable denitrification despite stress-imposing conditions. In the microbial community analysis, heterotrophs were dominant and acetogens accounted for 11% of the biofilm. Metagenomic results showed a high abundance of functional genes involved in organic carbon metabolism and homoacetogenesis. Owing to the presence of organic compounds produced by acetogens and autotrophs, heterotrophic denitrification may occur simultaneously with autotrophic denitrification. As a result, the total removal flux of oxyanions (1.84 e eq/m-d) far exceeded the H flux (1.06 e eq/m-d). Thus, the large accumulation of biofilms could contribute to good resilience and enhanced removal fluxes.
在基于氢的膜生物膜反应器 (H-MBfR) 中,生物膜厚度被认为是反硝化的最重要因素之一。由于其对基质传输的阻力,MBfR 中的厚生物膜以低去除通量而闻名。在这项研究中,在 H 通量为 1.06 e eq/m-d 的情况下,H-MBfR 在各种阴离子(如 NO-N、SO-S 和 ClO)的负荷率下运行。实验以分别为 0.464、0.026 和 0.211 e eq/m-d 的 NO-N、SO-S 和 ClO 负荷开始,温度为 20°C。在最具压力的条件下,负荷率分别同时增加到 1.911、0.869 和 0.108 e eq/m-d,温度为 10°C。与使用硝化 H-MBfR 进行 120 天的先前研究相比,我们观察到在明显更厚的生物膜(约 2.7 cm)中性能得到了显著改善。冲击阴离子负荷导致总氮 (TN) 去除率下降 20%至 30%,但 TN 去除率在几天内恢复到 100%。同样,即使在 10°C 时也观察到完全反硝化。厚生物膜的保护功能和微生物多样性可能允许在施加压力的条件下稳定反硝化。在微生物群落分析中,异养生物占主导地位,产乙酸菌占生物膜的 11%。宏基因组学结果显示,参与有机碳代谢和同型产乙酸的功能基因丰度很高。由于产乙酸菌和自养生物产生的有机化合物的存在,异养反硝化可能与自养反硝化同时发生。因此,阴离子(1.84 e eq/m-d)的总去除通量远远超过 H 通量(1.06 e eq/m-d)。因此,生物膜的大量积累可能有助于良好的弹性和增强的去除通量。