Suppr超能文献

dtiRIM:一种可推广的扩散张量成像深度学习方法。

dtiRIM: A generalisable deep learning method for diffusion tensor imaging.

机构信息

Erasmus MC University Medical Center, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands.

Erasmus MC University Medical Center, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands.

出版信息

Neuroimage. 2023 Apr 1;269:119900. doi: 10.1016/j.neuroimage.2023.119900. Epub 2023 Jan 24.

Abstract

Diffusion weighted MRI is an indispensable tool for routine patient screening and diagnostics of pathology. Recently, several deep learning methods have been proposed to quantify diffusion parameters, but poor generalisation to new data prevents broader use of these methods, as they require retraining of the neural network for each new scan protocol. In this work, we present the dtiRIM, a new deep learning method for Diffusion Tensor Imaging (DTI) based on the Recurrent Inference Machines. Thanks to its ability to learn how to solve inverse problems and to use the diffusion tensor model to promote data consistency, the dtiRIM can generalise to variations in the acquisition settings. This enables a single trained network to produce high quality tensor estimates for a variety of cases. We performed extensive validation of our method using simulation and in vivo data, and compared it to the Iterated Weighted Linear Least Squares (IWLLS), the approach of the state-of-the-art MRTrix3 software, and to an implementation of the Maximum Likelihood Estimator (MLE). Our results show that dtiRIM predictions present low dependency on tissue properties, anatomy and scanning parameters, with results comparable to or better than both IWLLS and MLE. Further, we demonstrate that a single dtiRIM model can be used for a diversity of data sets without significant loss in quality, representing, to our knowledge, the first generalisable deep learning based solver for DTI.

摘要

扩散加权磁共振成像(DWI)是常规患者筛查和病理诊断的不可或缺的工具。最近,已经提出了几种深度学习方法来量化扩散参数,但由于这些方法对新数据的泛化能力较差,因此无法更广泛地使用这些方法,因为它们需要针对每个新的扫描协议重新训练神经网络。在这项工作中,我们提出了基于递归推理机的用于扩散张量成像(DTI)的新深度学习方法 dtiRIM。由于其能够学习如何解决逆问题以及使用扩散张量模型来促进数据一致性,因此 dtiRIM 可以推广到采集设置的变化。这使得单个训练网络可以为各种情况生成高质量的张量估计。我们使用模拟和体内数据对我们的方法进行了广泛的验证,并将其与迭代加权线性最小二乘法(IWLLS),即最先进的 MRTrix3 软件的方法,以及最大似然估计器(MLE)的实现进行了比较。我们的结果表明,dtiRIM 预测对组织特性、解剖结构和扫描参数的依赖性较低,其结果与 IWLLS 和 MLE 相当或更好。此外,我们证明了单个 dtiRIM 模型可以用于多种数据集而不会显著降低质量,这代表了我们所知的第一个可用于 DTI 的可推广的深度学习求解器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验