Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.
Brain Behav Immun. 2023 Mar;109:144-161. doi: 10.1016/j.bbi.2023.01.016. Epub 2023 Jan 23.
In the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.k.a. Ikaros) gene plays crucial roles in modulating the function and maturation of circulating monocytes and lymphocytes, but whether it regulates microglial functions and states is unknown. Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer's disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function.
在过去的二十年中,小胶质细胞已成为许多神经退行性疾病进展的关键贡献者,它们不仅发挥其经典的免疫功能,而且作为具有调节突触和神经活动能力的极其活跃的细胞。这种动态行为,以及它们在大脑实质中的不同作用和对各种干扰的反应,使得人们认为小胶质细胞的激活比预期的更为多样化,并且理解小胶质细胞状态的分子机制对于从发育到衰老的健康和疾病中的作用至关重要。Ikaros 基因家族成员 1(Ikzf1,也称为 Ikaros)基因在调节循环单核细胞和淋巴细胞的功能和成熟中发挥着关键作用,但它是否调节小胶质细胞的功能和状态尚不清楚。使用遗传工具,我们在这里描述了 Ikzf1 特异性地在大脑皮层和海马等脑区的成年小胶质细胞中表达。通过对 Ikzf1 缺陷小鼠进行特征描述,我们观察到这些小鼠表现出空间学习缺陷、海马 CA3-CA1 长时程增强受损和 CA1 锥体神经元中的棘突密度降低,这与小胶质细胞中突触标记物的表达增加有关。此外,这些 Ikzf1 缺陷小胶质细胞在海马中表现出严重的异常形态,伴随着星形胶质细胞增生、炎症小体组成异常和与疾病相关的小胶质细胞分子的表达改变。有趣的是,缺乏 Ikzf1 会导致海马中的组蛋白 3 乙酰化和甲基化水平发生变化。由于缺乏 Ikzf1 的小鼠似乎会导致小胶质细胞内的突触标记物内化,以及严重的神经胶质增生,因此我们随后分析了几种神经退行性疾病模型中海马中的 Ikzf1 水平。这些神经退行性疾病模型的海马和阿尔茨海默病患者死后海马样本中的 Ikzf1 水平升高。最后,在培养的小胶质细胞中过表达 Ikzf1 可使这些细胞在脂多糖处理时反应性降低,并且与对照小胶质细胞相比吞噬作用减少。总而言之,这些结果表明,成年海马中改变的 Ikzf1 水平通过改变小胶质细胞状态和功能足以诱导突触可塑性和记忆缺陷。