Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile.
Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica Del Norte, Antofagasta, Chile.
Environ Pollut. 2023 Mar 15;321:121139. doi: 10.1016/j.envpol.2023.121139. Epub 2023 Jan 23.
In 2020, more than 21,000 tons of diesel oil were released accidently into the environment with most of it contaminating water bodies. There is an urgent need for sustainable technologies to clean up rivers and oceans to protect wildlife and human health. One solution is harnessing the power of bacterial consortia; however isolated microbes from different environments have shown low diesel bioremediation rates in seawater thus far. An outstanding question is whether Antarctic microorganisms that thrive in environments polluted with hydrocarbons exhibit better diesel degrading activities when propagated at higher temperatures than those encountered in their natural ecosystems. Here, we isolated bacterial consortia, LR-30 (30 °C) and LR-10 (10 °C), from the Antarctic rhizosphere soil of Deschampsia antarctica (Livingston Island), that used diesel oil as the only carbon substrate. We found that LR-30 and LR-10 batch bioreactors metabolized nearly the entire diesel content when the initial concentration was 10 (g/L) in seawater. Increasing the initial diesel concentration to 50 gDiesel/L, LR-30 and LR-10 bioconverted 33.4 and 31.2 gDiesel/L in 7 days, respectively. The 16S rRNA gene sequencing profiles revealed that the dominant bacterial genera of the inoculated LR-30 community were Achromobacter (50.6%), Pseudomonas (25%) and Rhodanobacter (14.9%), whereas for LR-10 were Pseudomonas (58%), Candidimonas (10.3%) and Renibacterium (7.8%). We also established continuous bioreactors for diesel biodegradation where LR-30 bioremediated diesel at an unprecedent rate of (34.4 g/L per day), while LR-10 achieved (24.5 g/L per day) at 10 °C for one month. The abundance of each bacterial genera present significantly fluctuated at some point during the diesel bioremediation process, yet Achromobacter and Pseudomonas were the most abundant member at the end of the batch and continuous bioreactors for LR-30 and LR-10, respectively.
2020 年,超过 21000 吨的柴油意外泄漏到环境中,其中大部分污染了水体。因此,迫切需要可持续的技术来清理河流和海洋,以保护野生动植物和人类健康。一种解决方案是利用细菌群落的力量;然而,迄今为止,从不同环境中分离出来的微生物在海水中的柴油生物修复率很低。一个悬而未决的问题是,在高于其自然生态系统温度下繁殖时,在富含碳氢化合物的环境中茁壮成长的南极微生物是否表现出更好的柴油降解活性。在这里,我们从南极南极海蓬子(南极半岛)的根际土壤中分离出细菌群落 LR-30(30°C)和 LR-10(10°C),它们将柴油油用作唯一的碳底物。我们发现,当初始浓度为 10(g/L)时,LR-30 和 LR-10 批生物反应器在海水中几乎代谢了所有的柴油含量。当初始柴油浓度增加到 50 gDiesel/L 时,LR-30 和 LR-10 在 7 天内分别转化了 33.4 和 31.2 gDiesel/L。16S rRNA 基因测序图谱显示,接种的 LR-30 群落中的优势细菌属为无色杆菌(50.6%)、假单胞菌(25%)和罗丹杆菌(14.9%),而 LR-10 则为假单胞菌(58%)、念珠菌(10.3%)和雷尼杆菌(7.8%)。我们还建立了连续生物反应器来进行柴油生物降解,其中 LR-30 以创纪录的(34.4 g/L/天)的速度进行生物修复,而 LR-10 在 10°C 下一个月的速度为(24.5 g/L/天)。在柴油生物修复过程中,每个细菌属的丰度在某些时候都有明显波动,但在 LR-30 和 LR-10 的批式和连续生物反应器结束时,无色杆菌和假单胞菌是最丰富的成员。