Bobadilla-Fazzini Roberto A, Poblete-Castro Ignacio
Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile.
Front Bioeng Biotechnol. 2023 Dec 13;11:1324417. doi: 10.3389/fbioe.2023.1324417. eCollection 2023.
The presence of sulfur impurities in complex iron ores represents a significant challenge for the iron mining and steel-making industries as their removal often necessitates the use of hazardous chemicals and energy-intensive processes. Here, we examined the microbial and mineralogical composition of both primary and secondary iron concentrates, identifying the presence of spp. and spp., while sulfur-oxidizing bacteria were absent. We also observed that these concentrates displayed up to 85% exposed pyrrhotite. These observations led us to explore the capacity of to remove pyrrhotite-sulfur impurities from iron concentrates. Employing stirred tank bioreactors operating at 30°C and inoculated with 5·10 ( cells mL), we achieved 45.6% sulfur removal over 16 days. Then, we evaluated packed leaching columns operated at 30°C, where the enriched system reached 43.5% desulfurization over 60 days. Remarkably, sulfur removal increased to 80% within 21 days under potassium limitation. We then compared the -mediated desulfurization process, with and without air supply, under potassium limitation, varying the initial biomass concentration in 1-m columns. Aerated systems facilitated approximately 70% sulfur removal across the entire column with minimal iron loss. In contrast, non-aerated leaching columns achieved desulfurization levels of only 6% and 26% in the lower and middle sections of the column, respectively. Collectively, we have developed an efficient, scalable biological sulfur-removal technology for processing complex iron ores, aligning with the burgeoning demand for sustainable practices in the mining industry.
复杂铁矿石中硫杂质的存在对铁矿开采和钢铁行业构成了重大挑战,因为去除这些杂质往往需要使用危险化学品和能源密集型工艺。在此,我们研究了初级和次级铁精矿的微生物和矿物组成,确定了 spp. 和 spp. 的存在,同时未发现硫氧化细菌。我们还观察到这些精矿中高达85%的磁黄铁矿暴露在外。这些观察结果促使我们探索 从铁精矿中去除磁黄铁矿硫杂质的能力。使用在30°C下运行并接种5·10(细胞/mL)的搅拌槽生物反应器,我们在16天内实现了45.6%的硫去除率。然后,我们评估了在30°C下运行的填充浸出柱,其中富集 的系统在60天内达到了43.5%的脱硫率。值得注意的是,在钾限制条件下,21天内硫去除率提高到了80%。然后,我们比较了在钾限制条件下,有和没有空气供应的 介导的脱硫过程,在1米长的柱子中改变初始生物量浓度。曝气系统在整个柱子中促进了约70%的硫去除,铁损失最小。相比之下,非曝气浸出柱在柱子下部和中部的脱硫率分别仅为6%和26%。总体而言,我们开发了一种高效、可扩展的生物脱硫技术来处理复杂铁矿石,符合采矿业对可持续实践不断增长的需求。