Suppr超能文献

小电荷对具有相似润湿性的表面摩擦力产生意外的巨大影响。

Unexpected large impact of small charges on surface frictions with similar wetting properties.

作者信息

Wang Chunlei, Yang Haijun, Wang Xian, Qi Chonghai, Qu Mengyang, Sheng Nan, Wan Rongzheng, Tu Yusong, Shi Guosheng

机构信息

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.

出版信息

Commun Chem. 2020 Feb 27;3(1):27. doi: 10.1038/s42004-020-0271-8.

Abstract

Generally, the interface friction on solid surfaces is regarded as consistent with wetting behaviors, characterized by the contact angles. Here using molecular dynamics simulations, we find that even a small charge difference (≤0.36 e) causes a change in the friction coefficient of over an order of magnitude on two-dimensional material and lipid surfaces, despite similar contact angles. This large difference is confirmed by experimentally measuring interfacial friction of graphite and MoS contacting on water, using atomic force microscopy. The large variation in the friction coefficient is attributed to the different fluctuations of localized potential energy under inhomogeneous charge distribution. Our results help to understand the dynamics of two-dimensional materials and biomolecules, generally formed by atoms with small charge, including nanomaterials, such as nitrogen-doped graphene, hydrogen-terminated graphene, or MoS, and molecular transport through cell membranes.

摘要

一般来说,固体表面的界面摩擦被认为与润湿行为一致,以接触角为特征。在这里,通过分子动力学模拟,我们发现即使是很小的电荷差(≤0.36 e)也会导致二维材料和脂质表面的摩擦系数发生一个数量级以上的变化,尽管接触角相似。通过使用原子力显微镜实验测量石墨和MoS在水上接触的界面摩擦,证实了这种巨大差异。摩擦系数的巨大变化归因于非均匀电荷分布下局部势能的不同波动。我们的结果有助于理解二维材料和生物分子的动力学,这些通常由带小电荷的原子形成,包括纳米材料,如氮掺杂石墨烯、氢终止石墨烯或MoS,以及分子通过细胞膜的传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b365/9814279/33bc7078c7e1/42004_2020_271_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验