Miklitz Marcin, Turcani Lukas, Greenaway Rebecca L, Jelfs Kim E
Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London, W12 0BZ, UK.
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
Commun Chem. 2020 Jan 22;3(1):10. doi: 10.1038/s42004-020-0255-8.
Computation is playing an increasing role in the discovery of materials, including supramolecular materials such as encapsulants. In this work, a function-led computational discovery using an evolutionary algorithm is used to find potential fullerene (C) encapsulants within the chemical space of porous organic cages. We find that the promising host cages for C evolve over the simulations towards systems that share features such as the correct cavity size to host C, planar tri-topic aldehyde building blocks with a small number of rotational bonds, di-topic amine linkers with functionality on adjacent carbon atoms, high structural symmetry, and strong complex binding affinity towards C. The proposed cages are chemically feasible and similar to cages already present in the literature, helping to increase the likelihood of the future synthetic realisation of these predictions. The presented approach is generalisable and can be tailored to target a wide range of properties in molecular material systems.
计算在材料发现中发挥着越来越重要的作用,包括超分子材料如封装剂。在这项工作中,使用一种基于进化算法的功能导向计算发现方法,在多孔有机笼的化学空间中寻找潜在的富勒烯(C)封装剂。我们发现,在模拟过程中,有前景的C宿主笼会朝着具有以下特征的体系演化:能容纳C的合适空腔尺寸、具有少量旋转键的平面三齿醛基构建块、在相邻碳原子上具有官能团的双齿胺连接体、高结构对称性以及对C有强的络合结合亲和力。所提出的笼在化学上是可行的,并且与文献中已有的笼相似,这有助于增加这些预测在未来合成实现的可能性。所提出的方法具有通用性,可针对分子材料系统中的广泛性质进行定制。