文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cancer discrimination by on-cell N-glycan ligation.

作者信息

Nomura Shogo, Egawa Yasuko, Urano Sayaka, Tahara Tsuyoshi, Watanabe Yasuyoshi, Tanaka Katsunori

机构信息

Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

出版信息

Commun Chem. 2020 Feb 26;3(1):26. doi: 10.1038/s42004-020-0270-9.


DOI:10.1038/s42004-020-0270-9
PMID:36703447
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9814842/
Abstract

In the field of molecular imaging, selectivity for target cells is a key determinant of the degree of imaging contrast. Previously, we developed a pre-targeted method by which target cells could be selectively imaged using a labeled N-glycan that was ligated in situ with an integrin-targeted cyclic RGD peptide on the cell surface. Here we demonstrate the power of our method in discriminating various cancerous and non-cancerous cells that cannot be distinguished using conventional RGD ligands. Using four cyclic RGDyK peptides with various linker lengths with five N-glycans, we identify optimal combinations to discriminate six types of αβ integrin-expressing cells on 96-well plates. The optimal combinations of RGD and N-glycan ligands for the target cells are fingerprinted on the plates, and then used to selectively image tumors in xenografted mouse models. Using this method, various N-glycan molecules, even those with millimolar affinities for their cognate lectins, could be used for selective cancer cell differentiation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/ccdaa6184c04/42004_2020_270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/62cbc4680063/42004_2020_270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/7a54c54fb8b7/42004_2020_270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/97898e5ce7de/42004_2020_270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/ccdaa6184c04/42004_2020_270_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/62cbc4680063/42004_2020_270_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/7a54c54fb8b7/42004_2020_270_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/97898e5ce7de/42004_2020_270_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b8/9814842/ccdaa6184c04/42004_2020_270_Fig4_HTML.jpg

相似文献

[1]
Cancer discrimination by on-cell N-glycan ligation.

Commun Chem. 2020-2-26

[2]
I-Labeled arginine-arginine-leucine (RRL)-containing cyclic peptide (YCGGRRLGGC) for imaging prostate carcinoma

2004

[3]
VivoTag-S680–conjugated 3-aminomethyl αβ antagonist derivative for fluorescence molecular tomography of tumors

2004

[4]
Cu-1,4,7,10-Tetraazacyclododecane-,,,-tetraacetic acid-PEGylated dimeric cyclic arginine-glycine-aspartic acid peptide

2004

[5]
Cu-1,4,7,10-Tetraazacyclododecane-,,,-tetraacetic acid-E{E[c(RGDyK)]}

2004

[6]
Cu-1,4,7,10-Tetraazacyclododecane-,,,-tetraacetic acid-E(E{E[c(RGDyK)]}) peptide

2004

[7]
Cu-4,11-Bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-cyclic-arginine-glycine-aspartic acid peptide

2004

[8]
Cu-1,4,7,10-Tetraazacyclododecane-,,,-tetraacetic acid-PEGylated cyclic arginine-glycine-aspartic acid peptide

2004

[9]
[F]FB-NH-mini-PEG-E{E[c(RGDyK)]}

2004

[10]
-[2-(4-[F]Fluorobenzamido)ethyl]maleimide-sulfhydryl-cyclic-arginine-glycine-aspartic acid peptide

2004

引用本文的文献

[1]
Covalent chemical probes.

Commun Chem. 2025-8-29

[2]
Glycosylation in Cervical Cancer: New Insights and Clinical Implications.

Front Oncol. 2021-8-16

本文引用的文献

[1]
Epigenetic silencing of the synthesis of immunosuppressive Siglec ligand glycans by NF-κB/EZH2/YY1 axis in early-stage colon cancers.

Biochim Biophys Acta Gene Regul Mech. 2019-2-1

[2]
In Situ Ligation of High- and Low-Affinity Ligands to Cell Surface Receptors Enables Highly Selective Recognition.

Adv Sci (Weinh). 2017-7-28

[3]
Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αβ integrin-overexpressing tumor cells.

Carbohydr Polym. 2017-7-16

[4]
Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells.

Biochem Biophys Res Commun. 2017-9-23

[5]
Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.

Int J Oncol. 2017-4

[6]
RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways.

Oncogene. 2017-3-2

[7]
Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding.

Mol Immunol. 2015-5

[8]
Integrin αvβ₆-Targeted SPECT Imaging for Pancreatic Cancer Detection.

J Nucl Med. 2014-4-7

[9]
Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737.

Cell Death Dis. 2013-9-12

[10]
99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma.

Mol Pharm. 2012-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索