Suppr超能文献

单原子 Pt 负载在 Cu@CuO 核壳纳米线上增强电化学催化和非酶葡萄糖传感。

Boosting Electrochemical Catalysis and Nonenzymatic Sensing Toward Glucose by Single-Atom Pt Supported on Cu@CuO Core-Shell Nanowires.

机构信息

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.

The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China.

出版信息

Small. 2023 May;19(18):e2207240. doi: 10.1002/smll.202207240. Epub 2023 Jan 26.

Abstract

It is critical to develop high-performance electrocatalyst for electrochemical nonenzymatic glucose sensing. In this work, a single-atom Pt supported on Cu@CuO core-shell nanowires (Pt /Cu@CuO NWs) for electrochemical nonenzymatic glucose sensor is designed. Pt /Cu@CuO NWs exhibit excellent electrocatalytic oxidation toward glucose with 70 mV lower onset potential (0.131 V) and 2.4 times higher response current than Cu NWs. Sensors fabricated using Pt /Cu@CuO NWs also show high sensitivity (852.163 µA mM cm ), low detection limit (3.6 µM), wide linear range (0.01-5.18 µM), excellent selectivity, and great long-term stability. The outstanding sensing performance of Pt /Cu@CuO NWs, investigated by experiments and density functional theory (DFT) calculations, is attributed to the synergistic effect between Pt single atoms and Cu@CuO core-shell nanowires that generates strong binding energy of glucose on the nanowires. The work provides a new pathway for exploring highly active SACs for electrochemical nonenzymatic glucose sensor.

摘要

开发用于电化学非酶葡萄糖传感的高性能电催化剂至关重要。在这项工作中,设计了一种负载在 Cu@CuO 核壳纳米线(Pt/Cu@CuO NWs)上的单原子 Pt 用于电化学非酶葡萄糖传感器。Pt/Cu@CuO NWs 对葡萄糖表现出优异的电催化氧化性能,其起始电位(0.131 V)低 70 mV,响应电流比 Cu NWs 高 2.4 倍。使用 Pt/Cu@CuO NWs 制造的传感器还表现出高灵敏度(852.163 µA mM cm)、低检测限(3.6 µM)、宽线性范围(0.01-5.18 µM)、出色的选择性和良好的长期稳定性。通过实验和密度泛函理论(DFT)计算研究了 Pt/Cu@CuO NWs 的出色传感性能,这归因于 Pt 单原子和 Cu@CuO 核壳纳米线之间的协同效应,在纳米线上产生了葡萄糖的强结合能。这项工作为探索用于电化学非酶葡萄糖传感器的高活性单原子催化剂提供了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验