Suppr超能文献

用于从脑血管疾病的DSC-MR图像合成灌注参数图的图像到图像生成对抗网络。

Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease.

作者信息

Kossen Tabea, Madai Vince I, Mutke Matthias A, Hennemuth Anja, Hildebrand Kristian, Behland Jonas, Aslan Cagdas, Hilbert Adam, Sobesky Jan, Bendszus Martin, Frey Dietmar

机构信息

Charité Lab for Artificial Intelligence in Medicine (CLAIM), Charité-Universitätsmedizin Berlin, Berlin, Germany.

Department of Computer Engineering and Microelectronics, Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany.

出版信息

Front Neurol. 2023 Jan 10;13:1051397. doi: 10.3389/fneur.2022.1051397. eCollection 2022.

Abstract

Stroke is a major cause of death or disability. As imaging-based patient stratification improves acute stroke therapy, dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is of major interest in image brain perfusion. However, expert-level perfusion maps require a manual or semi-manual post-processing by a medical expert making the procedure time-consuming and less-standardized. Modern machine learning methods such as generative adversarial networks (GANs) have the potential to automate the perfusion map generation on an expert level without manual validation. We propose a modified pix2pix GAN with a temporal component (temp-pix2pix-GAN) that generates perfusion maps in an end-to-end fashion. We train our model on perfusion maps infused with expert knowledge to encode it into the GANs. The performance was trained and evaluated using the structural similarity index measure (SSIM) on two datasets including patients with acute stroke and the steno-occlusive disease. Our temp-pix2pix architecture showed high performance on the acute stroke dataset for all perfusion maps (mean SSIM 0.92-0.99) and good performance on data including patients with the steno-occlusive disease (mean SSIM 0.84-0.99). While clinical validation is still necessary for future studies, our results mark an important step toward automated expert-level perfusion maps and thus fast patient stratification.

摘要

中风是导致死亡或残疾的主要原因。随着基于成像的患者分层改善急性中风治疗,动态磁敏感对比磁共振成像(DSC-MRI)在脑灌注成像中备受关注。然而,专家级灌注图需要医学专家进行手动或半自动后处理,这使得该过程耗时且标准化程度较低。现代机器学习方法,如生成对抗网络(GAN),有潜力在无需人工验证的情况下,自动生成专家级的灌注图。我们提出了一种带有时间成分的改进型pix2pix GAN(temp-pix2pix-GAN),它能以端到端的方式生成灌注图。我们在注入专家知识的灌注图上训练模型,以便将其编码到GAN中。使用结构相似性指数测量(SSIM)在两个数据集上对模型的性能进行训练和评估,这两个数据集包括急性中风患者和狭窄闭塞性疾病患者。我们的temp-pix2pix架构在急性中风数据集的所有灌注图上表现出高性能(平均SSIM为0.92 - 0.99),在包括狭窄闭塞性疾病患者的数据上也表现良好(平均SSIM为0.84 - 0.99)。虽然未来研究仍需要进行临床验证,但我们的结果标志着朝着自动生成专家级灌注图以及快速患者分层迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e91c/9871486/b8e67b486fc2/fneur-13-1051397-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验