结合芯片实验室技术和多器官融合策略来估计大鼠的死亡时间间隔。
Combining with lab-on-chip technology and multi-organ fusion strategy to estimate post-mortem interval of rat.
作者信息
Du Qiu-Xiang, Zhang Shuai, Long Fei-Hao, Lu Xiao-Jun, Wang Liang, Cao Jie, Jin Qian-Qian, Ren Kang, Zhang Ji, Huang Ping, Sun Jun-Hong
机构信息
Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China.
School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China.
出版信息
Front Med (Lausanne). 2023 Jan 10;9:1083474. doi: 10.3389/fmed.2022.1083474. eCollection 2022.
BACKGROUND
The estimation of post-mortem interval (PMI) is one of the most important problems in forensic pathology all the time. Although many classical methods can be used to estimate time since death, accurate and rapid estimation of PMI is still a difficult task in forensic practice, so the estimation of PMI requires a faster, more accurate, and more convenient method.
MATERIALS AND METHODS
In this study, an experimental method, lab-on-chip, is used to analyze the characterizations of polypeptide fragments of the lung, liver, kidney, and skeletal muscle of rats at defined time points after death (0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model: stacking, soft voting, and soft-weighted voting) are applied to predict PMI with single organ. Multi-organ fusion strategy is designed to predict PMI based on multiple organs. Then, the ensemble pruning algorithm determines the best combination of multi-organ.
RESULTS
The kidney is the best single organ for predicting the time of death, and its internal and external accuracy is 0.808 and 0.714, respectively. Multi-organ fusion strategy dramatically improves the performance of PMI estimation, and its internal and external accuracy is 0.962 and 0.893, respectively. Finally, the best organ combination determined by the ensemble pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle.
CONCLUSION
Lab-on-chip is feasible to detect polypeptide fragments and multi-organ fusion is more accurate than single organ for PMI estimation.
背景
死后间隔时间(PMI)的估计一直是法医病理学中最重要的问题之一。尽管有许多经典方法可用于估计死亡时间,但在法医实践中,准确快速地估计PMI仍然是一项艰巨的任务,因此PMI的估计需要一种更快、更准确且更便捷的方法。
材料与方法
在本研究中,采用一种实验方法——芯片实验室,来分析大鼠在死后特定时间点(0、1、2、3、5、7、9、12、15、18、21、24、27和30天)肺、肝、肾和骨骼肌的多肽片段特征。然后,应用机器学习算法(基础模型:逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、梯度提升决策树(GBDT)和多层感知器(MLPC);集成模型:堆叠、软投票和软加权投票)来基于单一器官预测PMI。设计多器官融合策略以基于多个器官预测PMI。然后,集成剪枝算法确定多器官的最佳组合。
结果
肾脏是预测死亡时间的最佳单一器官,其内部和外部准确率分别为0.808和0.714。多器官融合策略显著提高了PMI估计的性能,其内部和外部准确率分别为0.962和0.893。最后,由集成剪枝算法确定的最佳器官组合是所有器官,如肺、肝、肾和骨骼肌。
结论
芯片实验室检测多肽片段是可行的,并且对于PMI估计,多器官融合比单一器官更准确。