Suppr超能文献

基于确定性学习的 Hindmarsh-Rose 神经元模型拓扑识别与动态模式识别

Topology identification and dynamical pattern recognition for Hindmarsh-Rose neuron model via deterministic learning.

作者信息

Chen Danfeng, Li Junsheng, Zeng Wei, He Jun

机构信息

School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528225 People's Republic of China.

School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People's Republic of China.

出版信息

Cogn Neurodyn. 2023 Feb;17(1):203-220. doi: 10.1007/s11571-022-09812-3. Epub 2022 May 13.

Abstract

Studies have shown that Parkinson's, epilepsy and other brain deficits are closely related to the ability of neurons to synchronize with their neighbors. Therefore, the neurobiological mechanism and synchronization behavior of neurons has attracted much attention in recent years. In this contribution, it is numerically investigated the complex nonlinear behaviour of the Hindmarsh-Rose neuron system through the time responses, system bifurcation diagram and Lyapunov exponent under different system parameters. The system presents different and complex dynamic behaviors with the variation of parameter. Then, the identification of the nonlinear dynamics and topologies of the Hindmarsh-Rose neural networks under unknown dynamical environment is discussed. By using the deterministic learning algorithm, the unknown dynamics and topologies of the Hindmarsh-Rose system are locally accurately identified. Additionally, the identified system dynamics can be stored and represented in the form of constant neural networks due to the convergence of system parameters. Finally, based on the time-invariant representation of system dynamics, a fast dynamical pattern recognition method via system synchronization is constructed. The achievements of this work will provide more incentives and possibilities for biological experiments and medical treatment as well as other related clinical researches, such as the quantifying and explaining of neurobiological mechanism, early diagnosis, classification and control (treatment) of neurologic diseases, such as Parkinson's and epilepsy. Simulations are included to verify the effectiveness of the proposed method.

摘要

研究表明,帕金森病、癫痫和其他脑功能缺陷与神经元与其相邻神经元同步的能力密切相关。因此,神经元的神经生物学机制和同步行为近年来备受关注。在本研究中,通过不同系统参数下的时间响应、系统分岔图和李雅普诺夫指数,对 Hindmarsh-Rose 神经元系统的复杂非线性行为进行了数值研究。随着参数的变化,该系统呈现出不同且复杂的动力学行为。然后,讨论了在未知动力学环境下 Hindmarsh-Rose 神经网络的非线性动力学和拓扑结构的识别问题。利用确定性学习算法,对 Hindmarsh-Rose 系统的未知动力学和拓扑结构进行了局部精确识别。此外,由于系统参数的收敛,所识别的系统动力学可以以恒定神经网络的形式存储和表示。最后,基于系统动力学的时不变表示,构建了一种通过系统同步的快速动力学模式识别方法。本工作的成果将为生物实验、医学治疗以及其他相关临床研究,如神经生物学机制的量化和解释、帕金森病和癫痫等神经系统疾病的早期诊断、分类和控制(治疗),提供更多的激励和可能性。文中包含仿真以验证所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验