Suppr超能文献

大规模神经元群体中 Hindmarsh-Rose 神经元模型非线性行为的高效数字设计。

Efficient digital design of the nonlinear behavior of Hindmarsh-Rose neuron model in large-scale neural population.

机构信息

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

出版信息

Sci Rep. 2024 Feb 15;14(1):3833. doi: 10.1038/s41598-024-54525-8.

Abstract

Spiking networks, as the third generation of neural networks, are of great interest today due to their low power consumption in cognitive processes. This important characteristic has caused the hardware implementation techniques of spiking networks in the form of neuromorphic systems attract a lot of attention. For the first time, the focus is on the digital implementation based on CORDIC approximation of the Hindmarsh-Rose (HR) neuron so that the hardware implementation cost is lower than previous studies. If the digital design of a neuron is done efficient, the possibility of implementing a population of neurons is provided for the feasibility of low-consumption implementation of high-level cognitive processes in hardware, which is considered in this paper through edge detector, noise removal and image magnification spiking networks based on the proposed CORDIC_HR model. While using less hardware resources, the proposed HR neuron model follows the behavior of the original neuron model in the time domain with much less error than previous study. Also, the complex nonlinear behavior of the original and the proposed model of HR neuron through the bifurcation diagram, phase space and nullcline space analysis under different system parameters was investigated and the good follow-up of the proposed model was confirmed from the original model. In addition to the fact that the individual behavior of the original and the proposed neurons is the same, the functional and behavioral performance of the randomly connected neuronal population of original and proposed neuron model is equal. In general, the main contribution of the paper is in presenting an efficient hardware model, which consumes less hardware resources, follows the behavior of the original model with high accuracy, and has an acceptable performance in image processing applications such as noise removal and edge detection.

摘要

尖峰神经网络作为第三代神经网络,由于其在认知过程中功耗低,因此备受关注。这个重要的特性使得基于神经形态系统的尖峰网络硬件实现技术引起了广泛关注。本文首次关注基于 CORDIC 逼近的 Hindmarsh-Rose(HR)神经元的数字实现,从而降低了硬件实现成本,优于以往的研究。如果神经元的数字设计高效,那么就有可能实现神经元群体,从而为在硬件中实现低功耗的高级认知过程提供可行性,本文通过基于所提出的 CORDIC_HR 模型的边缘检测、噪声去除和图像放大尖峰网络来考虑这一点。在使用较少硬件资源的情况下,所提出的 HR 神经元模型在时域中遵循原始神经元模型的行为,误差比以前的研究小得多。此外,通过分岔图、相空间和零轨空间分析,研究了原始和所提出的 HR 神经元模型在不同系统参数下的复杂非线性行为,并从原始模型确认了所提出模型的良好跟踪。除了原始和所提出的神经元的个体行为相同之外,原始和所提出的神经元模型的随机连接神经元群体的功能和行为性能也相等。总的来说,本文的主要贡献在于提出了一种高效的硬件模型,该模型消耗的硬件资源较少,高精度地跟踪原始模型的行为,并且在噪声去除和边缘检测等图像处理应用中具有可接受的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验