Suppr超能文献

通过利用类别混淆改进成瘾咨询中治疗师行为的预测

IMPROVING THE PREDICTION OF THERAPIST BEHAVIORS IN ADDICTION COUNSELING BY EXPLOITING CLASS CONFUSIONS.

作者信息

Chen Zhuohao, Singla Karan, Gibson James, Can Dogan, Imel Zac E, Atkins David C, Georgiou Panayiotis, Narayanan Shrikanth

机构信息

Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, USA.

Department Educational Psychology, University of Utah, Salt Lake City, UT, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:6605-6609. doi: 10.1109/icassp.2019.8682885. Epub 2019 Apr 17.

Abstract

In this work we address the problem of joint prosodic and lexical behavioral annotation for addiction counseling. We expand on past work that employed Recurrent Neural Networks (RNNs) on multimodal features by grouping and classifying subsets of classes. We propose two implementations: One is hierarchical classification, which uses the behavior confusion matrix to cluster similar classes and makes the prediction based on a tree structure. The second is a graph-based method which uses the result of the original classification just to find a certain subset of the most probable candidate classes, where the candidate sets of different predicted classes are determined by the class confusions. We make a second prediction with simpler classifier to discriminate the candidates. The evaluation shows that the strict hierarchical approach degrades performance, likely due to error propagation, while the graph-based hierarchy provides significant gains.

摘要

在这项工作中,我们解决了成瘾咨询中韵律和词汇行为联合注释的问题。我们在过去将循环神经网络(RNN)用于多模态特征的工作基础上进行扩展,通过对类别的子集进行分组和分类来实现。我们提出了两种实现方法:一种是层次分类,它使用行为混淆矩阵对相似的类进行聚类,并基于树结构进行预测。第二种是基于图的方法,它仅使用原始分类的结果来找到最可能的候选类的某个子集,其中不同预测类别的候选集由类混淆确定。我们使用更简单的分类器进行第二次预测以区分候选类。评估表明,严格的层次方法会降低性能,可能是由于误差传播,而基于图的层次结构则带来了显著的提升。

相似文献

1
IMPROVING THE PREDICTION OF THERAPIST BEHAVIORS IN ADDICTION COUNSELING BY EXPLOITING CLASS CONFUSIONS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:6605-6609. doi: 10.1109/icassp.2019.8682885. Epub 2019 Apr 17.
2
RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data.
Med Image Anal. 2022 Jan;75:102272. doi: 10.1016/j.media.2021.102272. Epub 2021 Oct 21.
3
Multivariate time-series classification with hierarchical variational graph pooling.
Neural Netw. 2022 Oct;154:481-490. doi: 10.1016/j.neunet.2022.07.032. Epub 2022 Aug 2.
4
Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy.
Sensors (Basel). 2021 Nov 21;21(22):7743. doi: 10.3390/s21227743.
5
Do Convolutional Neural Networks Learn Class Hierarchy?
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):152-162. doi: 10.1109/TVCG.2017.2744683. Epub 2017 Aug 29.
7
Uncovering the effect of different brain regions on behavioral classification using recurrent neural networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6602-6607. doi: 10.1109/EMBC46164.2021.9629776.
8
Incorporating functional inter-relationships into protein function prediction algorithms.
BMC Bioinformatics. 2009 May 12;10:142. doi: 10.1186/1471-2105-10-142.
9
Labeled Graph Kernel for Behavior Analysis.
IEEE Trans Pattern Anal Mach Intell. 2016 Aug;38(8):1640-50. doi: 10.1109/TPAMI.2015.2481404. Epub 2015 Sep 23.
10
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
BMC Bioinformatics. 2007 May 22;8 Suppl 4(Suppl 4):S2. doi: 10.1186/1471-2105-8-S4-S2.

引用本文的文献

1
Natural language processing for mental health interventions: a systematic review and research framework.
Transl Psychiatry. 2023 Oct 6;13(1):309. doi: 10.1038/s41398-023-02592-2.
2
Towards End-2-end Learning for Predicting Behavior Codes from Spoken Utterances in Psychotherapy Conversations.
Proc Conf Assoc Comput Linguist Meet. 2020 Jul;2020:3797-3803. doi: 10.18653/v1/2020.acl-main.351.

本文引用的文献

1
Using Prosodic and Lexical Information for Learning Utterance-level Behaviors in Psychotherapy.
Interspeech. 2018 Sep;2018:3413-3417. doi: 10.21437/interspeech.2018-2551.
3
Computational psychotherapy research: scaling up the evaluation of patient-provider interactions.
Psychotherapy (Chic). 2015 Mar;52(1):19-30. doi: 10.1037/a0036841. Epub 2014 May 26.
5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验