Nosenko Tetyana, Zimmer Ina, Ghirardo Andrea, Köllner Tobias G, Weber Baris, Polle Andrea, Rosenkranz Maaria, Schnitzler Jörg-Peter
Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany.
Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany.
Fungal Genet Biol. 2023 Mar;165:103779. doi: 10.1016/j.fgb.2023.103779. Epub 2023 Jan 24.
Sesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions. Using integrated analyses of genomic, transcriptomic, volatilomic, and metabolomic data, we predict product profiles for 116 out of 146 putative STS genes identified in the genomes of 30 fungal species from different trophic groups. Our prediction method is based on the observation that STSs encoded by genes closely related phylogenetically are likely to share the initial enzymatic reactions of the ST biosynthesis pathways and, therefore, produce STs via the same reaction route. The classification by reaction routes allows to assign STs known to be emitted by a particular species to the putative STS genes from this species. Gene expression information helps to further specify these ST-to-STS assignments. Validation of the computational predictions of the STS functions using both in silico and experimental approaches shows that integrated multiomic analyses are able to correctly link cyclic STs of non-cadalane type to genes. In the process of the experimental validation, we characterized catalytic properties of several putative STS genes from the mycorrhizal fungus Laccaria bicolor. We show that the STSs encoded by the L.bicolor mycorrhiza-induced genes emit either nerolidol or α-cuprenene and α-cuparene, and discuss the possible roles of these STs in the mycorrhiza formation.
倍半萜烯(STs)是次生代谢产物,介导不同生物体之间的生物相互作用。预测物种特异性的ST库有助于解读同种或不同物种生物体之间的交流语言。然而,倍半萜烯合酶(STSs)具有高生化可塑性和催化多效性,这对基于同源性的STS功能预测提出了挑战。通过对基因组、转录组、挥发物组和代谢组数据的综合分析,我们预测了来自不同营养类群的30种真菌基因组中鉴定出的146个假定STS基因中的116个的产物谱。我们的预测方法基于这样的观察:系统发育上密切相关的基因编码的STSs可能共享ST生物合成途径的初始酶促反应,因此通过相同的反应途径产生STs。通过反应途径进行分类可以将已知由特定物种释放的STs分配给该物种的假定STS基因。基因表达信息有助于进一步明确这些ST与STS的对应关系。使用计算机模拟和实验方法对STS功能的计算预测进行验证表明,综合多组学分析能够正确地将非杜松烷型环状STs与基因联系起来。在实验验证过程中,我们表征了菌根真菌双色蜡蘑中几个假定STS基因的催化特性。我们表明,双色蜡蘑菌根诱导基因编码的STSs释放橙花叔醇或α-库贝烯和α-古巴烯,并讨论了这些STs在菌根形成中的可能作用。