Cai Tingting, Shi Liqi, Guo Huihui, Li Ruixing, Cao Weiqun, Shen Liang, Zhu Mingshe, Tao Yi
Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.).
Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
Drug Metab Dispos. 2023 May;51(5):591-598. doi: 10.1124/dmd.122.001135. Epub 2023 Jan 27.
The formation and accumulation of payload-containing catabolites (PCCs) from a noncleavable antibody-drug conjugate (ADC) in targeted and normal tissues are directly associated with the therapeutic effect and toxicity of the ADC, respectively. Understanding the PCC formation is important for supporting the payload design and facilitating preclinical evaluation of ADCs. However, detection and identification of PCCs of a noncleavable ADC are challenging due to their low concentrations and unknown structures. The main objective of this study was to develop and apply a generic liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for profiling PCCs in vitro. Noncleavable ADCs, ado-trastuzumab emtansine (T-DM1) and ADC-1, were incubated in liver lysosomes, liver S9, and/or cancer cells followed by data acquisition using LC-HRMS. Profiling PCCs mainly relied on processing LC-HRMS datasets using untargeted precise and thorough background subtraction (PATBS) processing and targeted product ion filtering (PIF). As a result, 12 PCCs of T-DM1 were detected and structurally characterized in human liver lysosomal incubation, a majority of which consisted of 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (MCC)-DM1 and a few amino acids. Additionally, the incubation of ADC-1 in human, rat, and monkey liver S9 and cancer cells generated one major and three very minor PCCs, verifying the payload design. The results demonstrate that PATBS enabled the comprehensive profiling of PCCs regardless of their molecular weights, charge states, and fragmentations. As a complementary tool, PIF detected specific PCCs with superior sensitivity. The combination of the in vitro metabolism systems and the LC-HRMS method is a useful approach to profiling in vitro PCCs of noncleavable ADCs in support of drug discovery programs. SIGNIFICANCE STATEMENT: Profiling in vitro payload-containing catabolites (PCCs) of a noncleavable antibody-drug conjugate (ADC) is important for optimization of the payload design and preclinical evaluation of ADC. However, currently used analytical approaches often fail to quickly provide reliable PCC profiling results. The work introduces a new liquid chromatography high resolution mass spectrometry method for comprehensive and rapid detection and characterization of PCCs released from a noncleavable ADC in liver lysosomes and S9 incubations.
在靶向组织和正常组织中,不可裂解抗体药物偶联物(ADC)形成并积累含有效载荷的分解代谢物(PCC),这分别与ADC的治疗效果和毒性直接相关。了解PCC的形成对于支持有效载荷设计和促进ADC的临床前评估非常重要。然而,由于不可裂解ADC的PCC浓度低且结构未知,对其进行检测和鉴定具有挑战性。本研究的主要目的是开发并应用一种通用的液相色谱 - 高分辨率质谱(LC - HRMS)方法来体外分析PCC。将不可裂解的ADC,ado曲妥珠单抗(ado - trastuzumab emtansine,T - DM1)和ADC - 1,在肝溶酶体、肝S9和/或癌细胞中孵育,然后使用LC - HRMS进行数据采集。分析PCC主要依靠使用非靶向精确彻底背景扣除(PATBS)处理和靶向产物离子过滤(PIF)来处理LC - HRMS数据集。结果,在人肝溶酶体孵育中检测到12种T - DM1的PCC并对其进行了结构表征,其中大多数由4 - [N - 马来酰亚胺甲基]环己烷 - 1 - 羧酸酯(MCC) - DM1和一些氨基酸组成。此外,ADC - 1在人、大鼠和猴的肝S9以及癌细胞中的孵育产生了一种主要的和三种非常少量的PCC,验证了有效载荷设计。结果表明,PATBS能够全面分析PCC,而不论其分子量、电荷状态和碎片化情况。作为一种补充工具,PIF以更高的灵敏度检测特定的PCC。体外代谢系统与LC - HRMS方法的结合是一种有用的方法,可用于分析不可裂解ADC的体外PCC,以支持药物发现计划。重要性声明:分析不可裂解抗体药物偶联物(ADC)的体外含有效载荷的分解代谢物(PCC)对于优化有效载荷设计和ADC的临床前评估很重要。然而,目前使用的分析方法往往无法快速提供可靠的PCC分析结果。这项工作引入了一种新的液相色谱高分辨率质谱方法,用于全面快速地检测和表征在肝溶酶体和S9孵育中不可裂解ADC释放的PCC。