Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Water Res. 2023 Mar 1;231:119646. doi: 10.1016/j.watres.2023.119646. Epub 2023 Jan 19.
UV/chlorine process is a promising advanced treatment to eliminate pathogen and remove refractory micropollutants for reclamation of municipal secondary effluent. However, effluent organic matter (EfOM) featuring high organic nitrogen content serves as a potential precursor for nitrogenous disinfection byproducts (N-DBPs) of health concern. The molecular-level alteration of a hydrophobic (HPO) EfOM fraction and a transphilic (TPI) EfOM fraction isolated from the same municipal effluent and the formation of N-DBPs in the UV/chlorine were tracked by ultrahigh-resolution mass spectrometry. Compared with chlorination, UV/chlorine induced a significantly greater modification on the molecular composition of EfOM and resulted in formation of unique formulae and chlorinated molecules with higher degree of oxidation, lower aromaticity, and less carbon number due to the involvement of reactive radical species. For both EfOM fractions, UV/chlorine formed more diverse DBPs with higher intensity and Cl-incorporation than chlorination. The TPI fraction of EfOM characterized by higher O/C and N/C ratios generated more N-DBPs with higher intensity clustered in the high O/C region than the HPO fraction of EfOM by both UV/chlorine and chlorination. Totally, 207 and 117 nitrogen-containing chlorinated formulae were recorded after UV/chlorine treatment of TPI and HPO, respectively. Precursor tracking found a greater number of DBPs were originated from raw EfOM through electrophilic substitution pathway rather than chlorine addition. Toxicity bioassays demonstrated that DBPs can trigger oxidative stress-induced DNA damage, while HPO fraction of EfOM dominated the induction of cytotoxicity. However, no correlation could be established between the diversity/abundance of N-DBPs and the level of DNA damage. A total of 22 DBPs with a significant rank correlation with DNA damage were identified, while CHONCl was found as the N-DBP with the strongest correlation. The potential toxic chlorine-containing formula with the most abundant intensity was assigned to CHOCl. This study suggests that the character and transformation of EfOM and associated toxicity is critical to evaluate the UV/chlorine process toward practical application.
UV/氯工艺是一种很有前途的高级处理方法,可用于消除病原体和去除难处理的微污染物,以回收城市二级出水。然而,具有高有机氮含量的出水有机物 (EfOM) 是健康关注的含氮消毒副产物 (N-DBPs) 的潜在前体。从同一城市废水中分离出的疏水性 (HPO) EfOM 部分和反相亲脂性 (TPI) EfOM 部分的分子水平变化以及在 UV/氯中的 N-DBPs 的形成通过超高分辨率质谱进行了跟踪。与氯化相比,UV/氯对 EfOM 的分子组成产生了更大的修饰作用,导致形成了独特的配方和具有更高氧化程度、更低芳香度和更少碳原子数的氯化分子,这是由于反应性自由基的参与。对于两种 EfOM 馏分,UV/氯形成的 DBPs 比氯化具有更多的种类和更高的强度和氯含量。由于较高的 O/C 和 N/C 比,TPI 部分的 EfOM 比 HPO 部分生成更多的 N-DBPs,其强度更高,聚集在高 O/C 区域,无论是通过 UV/氯还是氯化。在用 UV/氯处理 TPI 和 HPO 后,分别记录了 207 种和 117 种含氮氯化配方。通过前体跟踪发现,通过亲电取代途径而不是氯加成,更多的 DBPs 来自原始 EfOM。毒性生物测定表明,DBPs 可以引发氧化应激诱导的 DNA 损伤,而 EfOM 的 HPO 部分则主导了细胞毒性的诱导。然而,N-DBPs 的多样性/丰度与 DNA 损伤水平之间没有相关性。确定了与 DNA 损伤具有显著等级相关性的 22 种 DBP,而 CHONCl 被发现是与 DNA 损伤相关性最强的 N-DBP。与 DNA 损伤相关性最强的含氯潜在有毒配方被指定为 CHOCl。本研究表明,EfOM 的特性和转化及其相关毒性对于评估 UV/氯工艺的实际应用至关重要。