Mendez-Vazquez Hadassah, Roach Regan L, Nip Kaila, Sathler Matheus F, Garver Tyler, Danzman Rosaline A, Moseley Madeleine C, Roberts Jessica P, Koch Olivia N, Steger Ava A, Lee Rahmi, Arikkath Jyothi, Kim Seonil
bioRxiv. 2023 Jan 12:2023.01.12.523372. doi: 10.1101/2023.01.12.523372.
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits.
δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
δ-连环蛋白在兴奋性突触中表达,并在突触后致密区作为谷氨酸能α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)GluA2亚基的锚定蛋白发挥作用。该基因中的甘氨酸34突变为丝氨酸(G34S)的突变在自闭症谱系障碍(ASD)患者中被发现,并导致兴奋性突触处δ-连环蛋白功能丧失,这被认为是人类ASD发病机制的基础。然而,G34S突变如何导致δ-连环蛋白功能丧失从而诱发ASD仍不清楚。在此,我们利用神经母细胞瘤细胞发现,G34S突变产生了糖原合酶激酶3β(GSK3β)的一个额外磷酸化位点。这促进了δ-连环蛋白的降解并导致δ-连环蛋白水平降低,这可能导致了δ-连环蛋白功能的丧失。携带δ-连环蛋白G34S突变的小鼠皮层中的突触δ-连环蛋白和GluA2水平显著降低。G34S突变增加了皮层兴奋性神经元中的谷氨酸能活性,而在抑制性中间神经元中则降低,表明细胞兴奋和抑制发生了变化。δ-连环蛋白G34S突变小鼠还表现出社交功能障碍,这是ASD的一个常见特征。最重要的是,抑制GSK3β活性可逆转G34S诱导的细胞和小鼠中δ-连环蛋白功能丧失的效应。最后,利用δ-连环蛋白敲除小鼠,我们证实δ-连环蛋白是GSK3β抑制诱导δ-连环蛋白G34S突变动物恢复正常社交行为所必需的。综上所述,我们揭示了与ASD相关的G34S突变导致的δ-连环蛋白功能丧失通过谷氨酸能活性改变诱发社交功能障碍,并且GSK3β抑制可逆转δ-连环蛋白G34S诱导的突触和行为缺陷。
δ-连环蛋白对于许多脑区突触处谷氨酸能AMPAR的定位和功能很重要。该基因中的甘氨酸34突变为丝氨酸(G34S)的突变在自闭症患者中被发现,并导致δ-连环蛋白功能丧失。δ-连环蛋白的表达也与其他参与突触结构和功能的自闭症风险基因密切相关,进一步暗示其对自闭症病理生理学很重要。重要的是,社交功能障碍是自闭症的一个关键特征。尽管如此,δ-连环蛋白功能与社交行为之间的联系在很大程度上仍不清楚。因此,当前研究的意义在于通过发现δ-连环蛋白在社交行为中作用的分子、细胞和突触基础来填补这一空白。