Suppr超能文献

心肌肌球蛋白与调节性细肌丝相互作用的单分子力学与动力学

Single Molecule Mechanics and Kinetics of Cardiac Myosin Interacting with Regulated Thin Filaments.

作者信息

Clippinger Schulte Sarah R, Scott Brent, Barrick Samantha K, Stump W Tom, Blackwell Thomas, Greenberg Michael J

出版信息

bioRxiv. 2023 Jan 10:2023.01.09.522880. doi: 10.1101/2023.01.09.522880.

Abstract

UNLABELLED

The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction.

SIGNIFICANCE STATEMENT

Human heart contraction is powered by the molecular motor β-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of β-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.

摘要

未标记

心动周期是一个受到严格调控的过程,在此过程中,心脏在收缩期产生力量将血液泵送到全身,然后在舒张期放松。这种精细调节的周期被破坏会导致一系列疾病,包括心肌病和心力衰竭。心脏收缩由分子马达肌球蛋白驱动,肌球蛋白以钙依赖的方式拉动受调节的细肌丝。在一些肌肉和非肌肉肌球蛋白中,肌动蛋白上的调节蛋白可调节肌球蛋白工作行程的动力学、力学和负载依赖性;然而,细肌丝调节蛋白是否以及如何调节心肌肌球蛋白马达力学尚不清楚。为了填补这一关键的知识空白,我们使用单分子技术测量了存在和不存在细肌丝调节蛋白时心肌肌球蛋白工作行程亚步骤的动力学和力学。我们发现调节蛋白控制着肌球蛋白与细肌丝之间的钙依赖性相互作用。在生理相关的ATP浓度下,心肌肌球蛋白的力学和无负载动力学不受细肌丝调节蛋白的影响。我们还使用等长光学钳测量了生理相关ATP浓度下心肌肌球蛋白的负载依赖性动力学,发现细肌丝调节蛋白既不影响肌球蛋白主要负载依赖性转变的特性,也不影响其大小。有趣的是,在低ATP浓度下,细肌丝调节蛋白对肌动球蛋白解离动力学有微小影响,这表明存在一种超越简单空间位阻的机制。这些结果对疾病建模和肌肉收缩计算模型都具有重要意义。

意义声明

人类心脏收缩由分子马达β-心肌肌球蛋白驱动,β-心肌肌球蛋白拉动由肌动蛋白以及调节蛋白肌钙蛋白和原肌球蛋白组成的细肌丝。在一些肌肉和非肌肉系统中,这些调节蛋白可调节肌球蛋白工作行程的动力学、力学和负载依赖性。尽管在健康和疾病中起着核心作用,但β-心肌肌球蛋白的力学或动力学是否受调节蛋白影响尚不清楚。我们表明调节蛋白在生理相关的ATP浓度下不影响工作行程的力学或负载依赖性动力学;然而,它们在低ATP浓度下可影响动力学,这表明存在一种超越简单空间位阻的机制。这对心脏生理学和疾病建模具有重要意义。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验