Suppr超能文献

从儿科脑肿瘤多参数磁共振成像中自动进行肿瘤分割和脑组织提取:一项多机构研究。

Automated Tumor Segmentation and Brain Tissue Extraction from Multiparametric MRI of Pediatric Brain Tumors: A Multi-Institutional Study.

作者信息

Kazerooni Anahita Fathi, Arif Sherjeel, Madhogarhia Rachel, Khalili Nastaran, Haldar Debanjan, Bagheri Sina, Familiar Ariana M, Anderson Hannah, Haldar Shuvanjan, Tu Wenxin, Kim Meen Chul, Viswanathan Karthik, Muller Sabine, Prados Michael, Kline Cassie, Vidal Lorenna, Aboian Mariam, Storm Phillip B, Resnick Adam C, Ware Jeffrey B, Vossough Arastoo, Davatzikos Christos, Nabavizadeh Ali

出版信息

medRxiv. 2023 Jan 11:2023.01.02.22284037. doi: 10.1101/2023.01.02.22284037.

Abstract

BACKGROUND

Brain tumors are the most common solid tumors and the leading cause of cancer-related death among all childhood cancers. Tumor segmentation is essential in surgical and treatment planning, and response assessment and monitoring. However, manual segmentation is time-consuming and has high interoperator variability. We present a multi-institutional deep learning-based method for automated brain extraction and segmentation of pediatric brain tumors based on multi-parametric MRI scans.

METHODS

Multi-parametric scans (T1w, T1w-CE, T2, and T2-FLAIR) of 244 pediatric patients (n=215 internal and n=29 external cohorts) with de novo brain tumors, including a variety of tumor subtypes, were preprocessed and manually segmented to identify the brain tissue and tumor subregions into four tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and peritumoral edema (ED). The internal cohort was split into training (n=151), validation (n=43), and withheld internal test (n=21) subsets. DeepMedic, a three-dimensional convolutional neural network, was trained and the model parameters were tuned. Finally, the network was evaluated on the withheld internal and external test cohorts.

RESULTS

Dice similarity score (median±SD) was 0.91±0.10/0.88±0.16 for the whole tumor, 0.73±0.27/0.84±0.29 for ET, 0.79±19/0.74±0.27 for union of all non-enhancing components (i.e., NET, CC, ED), and 0.98±0.02 for brain tissue in both internal/external test sets.

CONCLUSIONS

Our proposed automated brain extraction and tumor subregion segmentation models demonstrated accurate performance on segmentation of the brain tissue and whole tumor regions in pediatric brain tumors and can facilitate detection of abnormal regions for further clinical measurements.

KEY POINTS

We proposed automated tumor segmentation and brain extraction on pediatric MRI.The volumetric measurements using our models agree with ground truth segmentations.

IMPORTANCE OF THE STUDY

The current response assessment in pediatric brain tumors (PBTs) is currently based on bidirectional or 2D measurements, which underestimate the size of non-spherical and complex PBTs in children compared to volumetric or 3D methods. There is a need for development of automated methods to reduce manual burden and intra- and inter-rater variability to segment tumor subregions and assess volumetric changes. Most currently available automated segmentation tools are developed on adult brain tumors, and therefore, do not generalize well to PBTs that have different radiological appearances. To address this, we propose a deep learning (DL) auto-segmentation method that shows promising results in PBTs, collected from a publicly available large-scale imaging dataset (Children's Brain Tumor Network; CBTN) that comprises multi-parametric MRI scans of multiple PBT types acquired across multiple institutions on different scanners and protocols. As a complementary to tumor segmentation, we propose an automated DL model for brain tissue extraction.

摘要

背景

脑肿瘤是最常见的实体肿瘤,也是所有儿童癌症中与癌症相关死亡的主要原因。肿瘤分割在手术和治疗计划以及反应评估与监测中至关重要。然而,手动分割既耗时,且不同操作人员之间的差异很大。我们提出了一种基于多机构深度学习的方法,用于基于多参数磁共振成像(MRI)扫描对小儿脑肿瘤进行自动脑提取和分割。

方法

对244例初发性脑肿瘤的小儿患者(n = 215例内部队列和n = 29例外部队列)进行多参数扫描(T1加权、T1加权增强、T2加权和T2液体衰减反转恢复序列),包括多种肿瘤亚型,对其进行预处理并手动分割,以将脑组织和肿瘤子区域识别为四个肿瘤子区域,即强化肿瘤(ET)、非强化肿瘤(NET)、囊性成分(CC)和瘤周水肿(ED)。内部队列被分为训练集(n = 151)、验证集(n = 43)和保留内部测试集(n = 21)。使用三维卷积神经网络DeepMedic进行训练并调整模型参数。最后,在保留的内部和外部测试队列上对该网络进行评估。

结果

在内部/外部测试集中,整个肿瘤的骰子相似性评分(中位数±标准差)为0.91±0.10/0.88±0.16,ET为0.73±0.27/0.84±0.29,所有非强化成分(即NET、CC、ED)的并集为0.79±0.19/0.74±0.27,脑组织为0.98±0.02。

结论

我们提出的自动脑提取和肿瘤子区域分割模型在小儿脑肿瘤的脑组织和整个肿瘤区域分割方面表现出准确的性能,并且可以促进异常区域的检测以便进行进一步的临床测量。

关键点

我们提出了小儿MRI的自动肿瘤分割和脑提取方法。使用我们的模型进行的体积测量与真实分割结果一致。

研究的重要性

目前小儿脑肿瘤(PBT)的反应评估基于双向或二维测量,与体积或三维方法相比,这低估了儿童非球形和复杂PBT的大小。需要开发自动方法以减轻手动负担以及评估者内部和评估者之间的变异性,以分割肿瘤子区域并评估体积变化。目前大多数可用的自动分割工具是基于成人大脑肿瘤开发的,因此不能很好地推广到具有不同放射学表现的PBT。为了解决这个问题,我们提出了一种深度学习(DL)自动分割方法,该方法在从公开可用的大规模成像数据集(儿童脑肿瘤网络;CBTN)收集的PBT中显示出有前景的结果,该数据集包括在不同扫描仪和协议上跨多个机构采集的多种PBT类型的多参数MRI扫描。作为肿瘤分割的补充,我们提出了一种用于脑组织提取的自动DL模型。

相似文献

2
Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: A multi-institutional study.
Neurooncol Adv. 2023 Mar 16;5(1):vdad027. doi: 10.1093/noajnl/vdad027. eCollection 2023 Jan-Dec.
3
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors.
AJNR Am J Neuroradiol. 2024 Aug 9;45(8):1081-1089. doi: 10.3174/ajnr.A8293.
4
Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning.
J Magn Reson Imaging. 2021 Jan;53(1):259-268. doi: 10.1002/jmri.27288. Epub 2020 Jul 13.
5
Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.
Clin Neuroradiol. 2021 Jun;31(2):357-366. doi: 10.1007/s00062-020-00884-4. Epub 2020 Feb 14.
6
Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised U-Net.
Med Phys. 2021 Aug;48(8):4365-4374. doi: 10.1002/mp.15032. Epub 2021 Jul 11.
7
Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
Eur Radiol. 2024 Aug;34(8):5056-5065. doi: 10.1007/s00330-023-10495-5. Epub 2024 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验