Suppr超能文献

基于人工神经网络的 MRI 神经肿瘤学中肿瘤自动定量反应评估:多中心回顾性研究。

Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.

机构信息

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.

Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Lancet Oncol. 2019 May;20(5):728-740. doi: 10.1016/S1470-2045(19)30098-1. Epub 2019 Apr 2.

Abstract

BACKGROUND

The Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol have been introduced to standardise assessment of MRI scans in both clinical trials and clinical practice. However, these criteria mainly rely on manual two-dimensional measurements of contrast-enhancing (CE) target lesions and thus restrict both reliability and accurate assessment of tumour burden and treatment response. We aimed to develop a framework relying on artificial neural networks (ANNs) for fully automated quantitative analysis of MRI in neuro-oncology to overcome the inherent limitations of manual assessment of tumour burden.

METHODS

In this retrospective study, we compiled a single-institution dataset of MRI data from patients with brain tumours being treated at Heidelberg University Hospital (Heidelberg, Germany; Heidelberg training dataset) to develop and train an ANN for automated identification and volumetric segmentation of CE tumours and non-enhancing T2-signal abnormalities (NEs) on MRI. Independent testing and large-scale application of the ANN for tumour segmentation was done in a single-institution longitudinal testing dataset from the Heidelberg University Hospital and in a multi-institutional longitudinal testing dataset from the prospective randomised phase 2 and 3 European Organisation for Research and Treatment of Cancer (EORTC)-26101 trial (NCT01290939), acquired at 38 institutions across Europe. In both longitudinal datasets, spatial and temporal tumour volume dynamics were automatically quantified to calculate time to progression, which was compared with time to progression determined by RANO, both in terms of reliability and as a surrogate endpoint for predicting overall survival. We integrated this approach for fully automated quantitative analysis of MRI in neuro-oncology within an application-ready software infrastructure and applied it in a simulated clinical environment of patients with brain tumours from the Heidelberg University Hospital (Heidelberg simulation dataset).

FINDINGS

For training of the ANN, MRI data were collected from 455 patients with brain tumours (one MRI per patient) being treated at Heidelberg hospital between July 29, 2009, and March 17, 2017 (Heidelberg training dataset). For independent testing of the ANN, an independent longitudinal dataset of 40 patients, with data from 239 MRI scans, was collected at Heidelberg University Hospital in parallel with the training dataset (Heidelberg test dataset), and 2034 MRI scans from 532 patients at 34 institutions collected between Oct 26, 2011, and Dec 3, 2015, in the EORTC-26101 study were of sufficient quality to be included in the EORTC-26101 test dataset. The ANN yielded excellent performance for accurate detection and segmentation of CE tumours and NE volumes in both longitudinal test datasets (median DICE coefficient for CE tumours 0·89 [95% CI 0·86-0·90], and for NEs 0·93 [0·92-0·94] in the Heidelberg test dataset; CE tumours 0·91 [0·90-0·92], NEs 0·93 [0·93-0·94] in the EORTC-26101 test dataset). Time to progression from quantitative ANN-based assessment of tumour response was a significantly better surrogate endpoint than central RANO assessment for predicting overall survival in the EORTC-26101 test dataset (hazard ratios ANN 2·59 [95% CI 1·86-3·60] vs central RANO 2·07 [1·46-2·92]; p<0·0001) and also yielded a 36% margin over RANO (p<0·0001) when comparing reliability values (ie, agreement in the quantitative volumetrically defined time to progression [based on radiologist ground truth vs automated assessment with ANN] of 87% [266 of 306 with sufficient data] compared with 51% [155 of 306] with local vs independent central RANO assessment). In the Heidelberg simulation dataset, which comprised 466 patients with brain tumours, with 595 MRI scans obtained between April 27, and Sept 17, 2018, automated on-demand processing of MRI scans and quantitative tumour response assessment within the simulated clinical environment required 10 min of computation time (average per scan).

INTERPRETATION

Overall, we found that ANN enabled objective and automated assessment of tumour response in neuro-oncology at high throughput and could ultimately serve as a blueprint for the application of ANN in radiology to improve clinical decision making. Future research should focus on prospective validation within clinical trials and application for automated high-throughput imaging biomarker discovery and extension to other diseases.

FUNDING

Medical Faculty Heidelberg Postdoc-Program, Else Kröner-Fresenius Foundation.

摘要

背景

反应评估神经肿瘤学(RANO)标准和统一协议的要求已经引入,以规范临床试验和临床实践中 MRI 扫描的评估。然而,这些标准主要依赖于对比增强(CE)靶病变的二维手动测量,因此限制了肿瘤负担和治疗反应的可靠和准确评估。我们旨在开发一种依赖于人工神经网络(ANN)的框架,用于神经肿瘤学的 MRI 全自动定量分析,以克服肿瘤负担手动评估的固有局限性。

方法

在这项回顾性研究中,我们汇集了来自海德堡大学医院(德国海德堡;海德堡培训数据集)治疗的脑肿瘤患者的单机构 MRI 数据集,以开发和培训用于自动识别和容积分割 MRI 上的 CE 肿瘤和非增强 T2 信号异常(NEs)的 ANN。ANN 用于肿瘤分割的独立测试和大规模应用是在海德堡大学医院的单机构纵向测试数据集和前瞻性随机 2 期和 3 期欧洲癌症研究与治疗组织(EORTC)-26101 试验(NCT01290939)的多机构纵向测试数据集(EORTC-26101 测试数据集)中进行的,该试验在欧洲 38 个机构进行。在这两个纵向数据集,自动定量分析了肿瘤的时空体积动态,以计算进展时间,并与 RANO 确定的进展时间进行比较,从可靠性和预测总生存的替代终点两个方面进行比较。我们将这种方法集成到神经肿瘤学的 MRI 全自动定量分析应用就绪软件基础设施中,并在海德堡大学医院的脑肿瘤患者模拟临床环境中进行了应用(海德堡模拟数据集)。

结果

为了训练 ANN,从 2009 年 7 月 29 日至 2017 年 3 月 17 日在海德堡医院接受治疗的 455 名脑肿瘤患者(每位患者一个 MRI)的 MRI 数据中进行了收集(海德堡培训数据集)。为了独立测试 ANN,在与培训数据集同时收集了 40 名患者的独立纵向数据集,共 239 个 MRI 扫描(海德堡测试数据集),并在 2011 年 10 月 26 日至 2015 年 12 月 3 日期间从 34 个机构收集了 532 名患者的 2034 个 MRI 扫描,这些 MRI 扫描质量足以纳入 EORTC-26101 测试数据集。ANN 对 CE 肿瘤和 NE 体积的准确检测和分割表现出优异的性能,在两个纵向测试数据集(CE 肿瘤的中位数 DICE 系数为 0.89 [95%CI 0.86-0.90],NE 为 0.93 [0.92-0.94];EORTC-26101 测试数据集的 CE 肿瘤为 0.91 [0.90-0.92],NE 为 0.93 [0.93-0.94])。基于肿瘤反应的 ANN 定量评估的进展时间是预测总生存的比中央 RANO 评估更好的替代终点,在 EORTC-26101 测试数据集(ANN 的危险比为 2.59 [95%CI 1.86-3.60],而中央 RANO 的危险比为 2.07 [1.46-2.92];p<0.0001)和当比较可靠性值(即,基于放射科医生地面实况与基于 ANN 的自动评估的定量体积定义进展时间的一致性)时,ANN 也比 RANO 有 36%的优势(p<0.0001)(即,有足够数据的 306 个中的 87%[266 个]与自动评估与基于 ANN 的自动评估的定量体积定义进展时间的一致性相比,与局部独立中央 RANO 评估的 51%[155 个]相比)。在海德堡模拟数据集(包含 466 名脑肿瘤患者,在 2018 年 4 月 27 日至 9 月 17 日之间进行了 595 次 MRI 扫描)中,在模拟临床环境中对 MRI 扫描进行按需自动处理和定量肿瘤反应评估需要 10 分钟的计算时间(平均每次扫描)。

解释

总的来说,我们发现 ANN 可以实现神经肿瘤学中肿瘤反应的客观和自动评估,具有高通量的特点,并最终可以作为在放射学中应用 ANN 以改善临床决策的蓝图。未来的研究应集中在临床试验中的前瞻性验证以及用于自动高通量成像生物标志物发现的应用,并扩展到其他疾病。

资金

海德堡大学医学系博士后计划,Else Kröner-Fresenius 基金会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验