Suppr超能文献

一种具有较高平均化合价以抑制钒氧化还原液流电池容量衰减的电解质。

An Electrolyte with Elevated Average Valence for Suppressing the Capacity Decay of Vanadium Redox Flow Batteries.

作者信息

Wang Zhenyu, Guo Zixiao, Ren Jiayou, Li Yiju, Liu Bin, Fan Xinzhuang, Zhao Tianshou

机构信息

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR999077, People's Republic of China.

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen518055, People's Republic of China.

出版信息

ACS Cent Sci. 2022 Dec 23;9(1):56-63. doi: 10.1021/acscentsci.2c01112. eCollection 2023 Jan 25.

Abstract

Nafion series membranes are widely used in vanadium redox flow batteries (VRFBs). However, the poor ion selectivity of the membranes to vanadium ions, especially for V, results in a rapid capacity decay during cycling. Although tremendous efforts have been made to improve the membrane's ion selectivity, increasing the ion selectivity without sacrificing the proton conductivity is still a challenging issue. In this work, instead of focusing on enhancing the membranes' ion selectivity, we develop an efficient valence regulation strategy to suppress the capacity decay caused by the crossover of V in VRFBs. Despite the discharge capacity of the VRFB with the elevated average valence electrolytes (V) being slightly lower than that with commercial electrolytes (V) in the first 35 cycles, the accumulated discharge capacity in 400 cycles is improved by 52.33%. Moreover, this method is efficient, is easy to scale up, and provides deep insights into the capacity decay mechanism of VRFBs.

摘要

纳滤膜系列在钒氧化还原液流电池(VRFBs)中被广泛应用。然而,该膜对钒离子,尤其是V的离子选择性较差,导致循环过程中容量迅速衰减。尽管人们已付出巨大努力来提高膜的离子选择性,但在不牺牲质子传导率的情况下提高离子选择性仍是一个具有挑战性的问题。在这项工作中,我们没有专注于提高膜的离子选择性,而是开发了一种有效的价态调控策略,以抑制VRFBs中V交叉导致的容量衰减。尽管在前35个循环中,使用平均价态升高的电解质(V)的VRFB的放电容量略低于使用商业电解质(V)的VRFB,但在400个循环中的累积放电容量提高了52.33%。此外,该方法高效、易于扩大规模,并为VRFBs的容量衰减机制提供了深入见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/550c/9881198/9d8124232b4e/oc2c01112_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验