Wei Siqi, Wu Bin, Xiang Aoxue, Zhu Yangfu, Song Chenguang
Beijing Key Laboratory of Intelligence Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing, China.
Faculty of Science, Beijing University of Technology, Beijing, China.
Front Res Metr Anal. 2023 Jan 11;7:1055348. doi: 10.3389/frma.2022.1055348. eCollection 2022.
Social media rumors have the capacity to harm the public perception and the social progress. The news propagation pattern is a key clue for detecting rumors. Existing propagation-based rumor detection methods represent propagation patterns as a static graph structure. They simply consider the structure information of news distribution in social networks and disregard the temporal information. The dynamic graph is an effective modeling tool for both the structural and temporal information involved in the process of news dissemination. Existing dynamic graph representation learning approaches struggle to capture the long-range dependence of the structure and temporal sequence as well as the rich semantic association between full graph features and individual parts. We build a transformer-based dynamic graph representation learning approach for rumor identification DGTR to address the aforementioned challenges. We design a position embedding format for the graph data such that the original transformer model can be utilized for learning dynamic graph representations. The model can describe the structural long-range reliance between the dynamic graph nodes and the temporal long-range dependence between the temporal snapshots by employing a self-attention mechanism. In addition, the token in transformer may model the rich semantic relationships between the complete graph and each subpart. Extensive experiments demonstrate the superiority of our model when compared to the state of the art.
社交媒体谣言有损害公众认知和社会进步的能力。新闻传播模式是检测谣言的关键线索。现有的基于传播的谣言检测方法将传播模式表示为静态图结构。它们只是简单地考虑社交网络中新闻传播的结构信息,而忽略了时间信息。动态图是用于新闻传播过程中所涉及的结构和时间信息的有效建模工具。现有的动态图表示学习方法难以捕捉结构和时间序列的长期依赖关系以及全图特征与各个部分之间丰富的语义关联。我们构建了一种基于Transformer的动态图表示学习方法用于谣言识别DGTR,以应对上述挑战。我们为图数据设计了一种位置嵌入格式,以便可以利用原始的Transformer模型来学习动态图表示。该模型可以通过采用自注意力机制来描述动态图节点之间的结构长期依赖关系以及时间快照之间的时间长期依赖关系。此外,Transformer中的token可以对完整图与每个子部分之间丰富的语义关系进行建模。大量实验表明,与现有技术相比,我们的模型具有优越性。