Venkatraman Vishal, Filiano Anthony J, Xu Li, Collins Leonard, Luo Emily, Ripple Katelyn M, de Castro George C, Boua Jane-Valeriane K, Marius Choiselle, Giamberardino Charles, Lad Shivanand P, Islam Williams Taufika, Bereman Michael S, Bedlack Richard S
Department of Neurosurgery, Duke University Medical Center, Durham, USA.
Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, USA.
Cureus. 2022 Dec 26;14(12):e32980. doi: 10.7759/cureus.32980. eCollection 2022 Dec.
Cerebrospinal fluid (CSF) has been implicated in amyotrophic lateral sclerosis (ALS) due to its ability to spread inflammatory proteins throughout the nervous system. We hypothesized that filtration of the CSF could remove pathogenic proteins and prevent them from altering motor phenotypes in a mouse model.
We filtered the CSF from 11 ALS patients via 100 kilodaltons (kD) molecular weight cut-off filters. We used mass spectrometry-based discovery proteomics workflows to compare protein abundances before and after filtration. To test the effects of CSF filtration on motor function, we injected groups of mice with saline, filtered ALS-CSF, or unfiltered ALS-CSF (n=12 per group) and assessed motor function via pole descent and open field tests.
We identified proteins implicated in ALS pathogenesis and showed that these were removed in significant amounts in our workflow. Key filtered proteins included complement proteins, chitinases, serine protease inhibitors, and neuro-inflammatory proteins such as amyloid precursor protein, chromogranin A, and glial fibrillary acidic protein. Compared to the filtered ALS-CSF mice, unfiltered ALS-CSF mice took longer to descend a pole (10 days post-injection, 11.14 seconds vs 14.25 seconds, p = 0.02) and explored less on an open field (one day post-injection, 21.81 m vs 16.83 m, p = 0.0004).
We demonstrated the ability to filter proteins from the CSF of ALS patients and identified potentially pathologic proteins that were reduced in quantity. Additionally, we demonstrated the ability of unfiltered ALS-CSF to induce motor deficits in mice on the pole descent and open field tests and showed that filtration could prevent this deficit. Given the lack of effective treatments for ALS, this could be a novel solution for patients suffering from this deadly and irreversible condition.
由于脑脊液(CSF)能够在整个神经系统中传播炎症蛋白,因此其与肌萎缩侧索硬化症(ALS)有关。我们假设,对脑脊液进行过滤可以去除致病蛋白,并防止它们在小鼠模型中改变运动表型。
我们通过截留分子量为100千道尔顿(kD)的滤器对11例ALS患者的脑脊液进行过滤。我们使用基于质谱的发现蛋白质组学工作流程来比较过滤前后的蛋白质丰度。为了测试脑脊液过滤对运动功能的影响,我们给几组小鼠注射生理盐水、过滤后的ALS脑脊液或未过滤的ALS脑脊液(每组n = 12),并通过爬杆试验和旷场试验评估运动功能。
我们鉴定出了与ALS发病机制相关的蛋白质,并表明在我们的工作流程中这些蛋白质被大量去除。关键的过滤蛋白包括补体蛋白、几丁质酶、丝氨酸蛋白酶抑制剂以及神经炎症蛋白,如淀粉样前体蛋白、嗜铬粒蛋白A和胶质纤维酸性蛋白。与注射过滤后的ALS脑脊液的小鼠相比,注射未过滤的ALS脑脊液的小鼠爬杆时间更长(注射后10天,11.14秒对14.25秒,p = 0.02),在旷场中的探索活动更少(注射后1天,21.81米对16.83米,p = 0.0004)。
我们证明了从ALS患者的脑脊液中过滤蛋白质的能力,并鉴定出了数量减少的潜在致病蛋白。此外,我们证明了未过滤的ALS脑脊液在爬杆试验和旷场试验中能够诱导小鼠出现运动缺陷,并表明过滤可以预防这种缺陷。鉴于目前缺乏针对ALS的有效治疗方法,这可能是为患有这种致命且不可逆疾病的患者提供的一种新解决方案。