Suppr超能文献

分水岭记忆加剧了2017年2月奥罗维尔的雨夹雪洪水。

Watershed memory amplified the Oroville rain-on-snow flood of February 2017.

作者信息

Haleakala Kayden, Brandt W Tyler, Hatchett Benjamin J, Li Dongyue, Lettenmaier Dennis P, Gebremichael Mekonnen

机构信息

Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.

Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, La Jolla, CA 92093, USA.

出版信息

PNAS Nexus. 2022 Dec 16;2(1):pgac295. doi: 10.1093/pnasnexus/pgac295. eCollection 2023 Jan.

Abstract

Mountain snowpacks are transitioning to experience less snowfall and more rainfall as the climate warms, creating more persistent low- to no-snow conditions. This precipitation shift also invites more high-impact rain-on-snow (ROS) events, which have historically yielded many of the largest and most damaging floods in the western United States. One such sequence of events preceded the evacuation of 188,000 residents below the already-damaged Oroville Dam spillway in February 2017 in California's Sierra Nevada. Prior studies have suggested that snowmelt during ROS dramatically amplified reservoir inflows. However, we present evidence that snowmelt may have played a smaller role than previously documented (augmenting terrestrial water inputs by 21%). A series of hydrologic model experiments and subdaily snow, soil, streamflow, and hydrometeorological measurements demonstrate that direct, "passive" routing of rainfall through snow, and increasingly efficient runoff driven by gradually wetter soils can alternatively explain the extreme runoff totals. Our analysis reveals a crucial link between frequent winter storms and a basin's hydrologic response-emphasizing the role of soil moisture "memory" of within-season storms in priming impactful flood responses. Given the breadth in plausible ROS flood mechanisms, this case study underscores a need for more detailed measurements of soil moisture along with in-storm changes to snowpack structure, extent, energy balance, and precipitation phase to address ROS knowledge gaps associated with current observational limits. Sharpening our conceptual understanding of basin-scale ROS better equips water managers moving forward to appropriately classify threat levels, which are projected to increase throughout the mid-21st century.

摘要

随着气候变暖,山区积雪正经历降雪减少、降雨增加的转变,导致无雪或低雪覆盖的情况持续更久。这种降水变化还引发了更多高影响的雨夹雪事件,美国西部历史上许多规模最大、破坏性最强的洪水都由此造成。2017年2月,加利福尼亚州内华达山脉受损的奥罗维尔大坝溢洪道下游,18.8万居民被迫撤离,之前就发生过这样一系列事件。此前的研究表明,雨夹雪期间的融雪显著增加了水库入流量。然而,我们提供的证据表明,融雪所起的作用可能比之前记录的要小(仅使陆地水输入增加了21%)。一系列水文模型实验以及对亚日尺度的积雪、土壤、径流和水文气象的测量表明,降雨通过积雪的直接“被动”径流以及土壤逐渐变湿驱动的径流效率提高,也能够解释极端径流总量。我们的分析揭示了频繁的冬季风暴与流域水文响应之间的关键联系,强调了季内风暴的土壤湿度“记忆”在引发有影响的洪水响应中的作用。鉴于雨夹雪引发洪水的机制具有多样性,本案例研究强调需要更详细地测量土壤湿度,以及风暴期间积雪结构、范围、能量平衡和降水相的变化,以填补与当前观测限制相关的雨夹雪知识空白。深化我们对流域尺度雨夹雪的概念理解,能更好地帮助水资源管理者对威胁级别进行适当分类,预计到21世纪中叶,这些威胁级别将不断上升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb99/9832955/daa88d27af9b/pgac295fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验