Suppr超能文献

概率基因型-表型图谱揭示了RNA折叠、自旋玻璃和量子电路的突变鲁棒性。

Probabilistic Genotype-Phenotype Maps Reveal Mutational Robustness of RNA Folding, Spin Glasses, and Quantum Circuits.

作者信息

Sappington Anna, Mohanty Vaibhav

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

Program for Health Sciences and Technology, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

ArXiv. 2025 Jan 3:arXiv:2301.01847v3.

Abstract

Recent studies of genotype-phenotype (GP) maps have reported universally enhanced phenotypic robustness to genotype mutations, a feature essential to evolution. Virtually all of these studies make a simplifying assumption that each genotype-represented as a sequence-maps deterministically to a single phenotype, such as a discrete structure. Here, we introduce probabilistic genotype-phenotype (PrGP) maps, where each genotype maps to a vector of phenotype probabilities, as a more realistic and universal language for investigating robustness in a variety of physical, biological, and computational systems. We study three model systems to show that PrGP maps offer a generalized framework which can handle uncertainty emerging from various physical sources: (1) thermal fluctuation in RNA folding, (2) external field disorder in spin glass ground state finding, and (3) superposition and entanglement in quantum circuits, which are realized experimentally on IBM quantum computers. In all three cases, we observe a novel biphasic robustness scaling which is enhanced relative to random expectation for more frequent phenotypes and approaches random expectation for less frequent phenotypes. We derive an analytical theory for the behavior of PrGP robustness, and we demonstrate that the theory is highly predictive of empirical robustness.

摘要

最近关于基因型-表型(GP)图谱的研究报告称,表型对基因型突变的稳健性普遍增强,这是进化的一个基本特征。几乎所有这些研究都做了一个简化假设,即每个以序列表示的基因型都确定性地映射到单一表型,比如离散结构。在此,我们引入概率基因型-表型(PrGP)图谱,其中每个基因型映射到一个表型概率向量,作为一种更现实、更通用的语言,用于研究各种物理、生物和计算系统中的稳健性。我们研究了三个模型系统,以表明PrGP图谱提供了一个通用框架,该框架可以处理源自各种物理源的不确定性:(1)RNA折叠中的热涨落,(2)自旋玻璃基态寻找中的外场无序,以及(3)量子电路中的叠加和纠缠,这些在IBM量子计算机上通过实验得以实现。在所有这三种情况下,我们观察到一种新颖的双相稳健性标度,对于更频繁出现的表型,相对于随机预期其稳健性增强,而对于不太频繁出现的表型则接近随机预期。我们推导了PrGP稳健性行为的解析理论,并证明该理论对经验稳健性具有高度预测性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b768/11887978/1c505ef5364d/nihpp-2301.01847v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验