Suppr超能文献

深度学习可减少钆剂量用于对比增强血脑屏障开放。

Deep Learning Enables Reduced Gadolinium Dose for Contrast-Enhanced Blood-Brain Barrier Opening.

作者信息

Lee Pin-Yu, Wei Hong-Jian, Pouliopoulos Antonios N, Forsyth Britney T, Yang Yanting, Zhang Chenghao, Laine Andrew F, Konofagou Elisa E, Wu Cheng-Chia, Guo Jia

机构信息

Department of Biomedical Engineering, The Fu Foundation of Engineering and Applied Science, Columbia University, New York, NY 10027 USA.

Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032 USA.

出版信息

ArXiv. 2023 Jan 18:arXiv:2301.07248v1.

Abstract

Focused ultrasound (FUS) can be used to open the blood-brain barrier (BBB), and MRI with contrast agents can detect that opening. However, repeated use of gadolinium-based contrast agents (GBCAs) presents safety concerns to patients. This study is the first to propose the idea of modeling a volume transfer constant (Ktrans) through deep learning to reduce the dosage of contrast agents. The goal of the study is not only to reconstruct artificial intelligence (AI) derived Ktrans images but to also enhance the intensity with low dosage contrast agent T1 weighted MRI scans. We successfully validated this idea through a previous state-of-the-art temporal network algorithm, which focused on extracting time domain features at the voxel level. Then we used a Spatiotemporal Network (ST-Net), composed of a spatiotemporal convolutional neural network (CNN)-based deep learning architecture with the addition of a three-dimensional CNN encoder, to improve the model performance. We tested the ST-Net model on ten datasets of FUS-induced BBB-openings aquired from different sides of the mouse brain. ST-Net successfully detected and enhanced BBB-opening signals without sacrificing spatial domain information. ST-Net was shown to be a promising method of reducing the need of contrast agents for modeling BBB-opening K-trans maps from time-series Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans.

摘要

聚焦超声(FUS)可用于打开血脑屏障(BBB),而使用造影剂的磁共振成像(MRI)可以检测到这种屏障的打开。然而,重复使用钆基造影剂(GBCA)会给患者带来安全隐患。本研究首次提出通过深度学习对容积转移常数(Ktrans)进行建模以减少造影剂用量的想法。该研究的目标不仅是重建人工智能(AI)衍生的Ktrans图像,还要通过低剂量造影剂T1加权MRI扫描增强图像强度。我们通过之前一种先进的时间网络算法成功验证了这一想法,该算法专注于在体素水平提取时域特征。然后,我们使用了一个时空网络(ST-Net),它由基于时空卷积神经网络(CNN)的深度学习架构以及一个三维CNN编码器组成,以提高模型性能。我们在从小鼠大脑不同侧面获取的十个FUS诱导的BBB开放数据集上测试了ST-Net模型。ST-Net成功检测并增强了BBB开放信号,同时没有牺牲空间域信息。结果表明,ST-Net是一种很有前景的方法,可减少从时间序列动态对比增强磁共振成像(DCE-MRI)扫描中为BBB开放Ktrans图建模所需的造影剂用量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7072/9882566/434c3245883d/nihpp-2301.07248v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验