Suppr超能文献

基于MOR、DOR、KOR、NOR和ZOR相互作用组网络的阿片类物质使用障碍的机器学习分析

Machine-learning Analysis of Opioid Use Disorder Informed by MOR, DOR, KOR, NOR and ZOR-Based Interactome Networks.

作者信息

Feng Hongsong, Elladki Rana, Jiang Jian, Wei Guo-Wei

出版信息

ArXiv. 2023 Jan 12:arXiv:2301.04815v1.

Abstract

Opioid use disorder (OUD) continuously poses major public health challenges and social implications worldwide with dramatic rise of opioid dependence leading to potential abuse. Despite that a few pharmacological agents have been approved for OUD treatment, the efficacy of said agents for OUD requires further improvement in order to provide safer and more effective pharmacological and psychosocial treatments. Preferable therapeutic treatments of OUD rely on the advances in understanding the neurobiological mechanism of opioid dependence. Proteins including mu, delta, kappa, nociceptin, and zeta opioid receptors are the direct targets of opioids. Each receptor has a large protein-protein interaction (PPI) network, that behaves differently when subjected to various treatments, thus increasing the complexity in the drug development process for an effective opioid addiction treatment. The report below analyzes the work by presenting a PPI-network informed machine-learning study of OUD. We have examined more than 500 proteins in the five opioid receptor networks and subsequently collected 74 inhibitor datasets. Machine learning models were constructed by pairing gradient boosting decision tree (GBDT) algorithm with two advanced natural language processing (NLP)-based molecular fingerprints. With these models, we systematically carried out evaluations of screening and repurposing potential of drug candidates for four opioid receptors. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were also considered in the screening of potential drug candidates. Our study can be a valuable and promising tool of pharmacological development for OUD treatments.

摘要

阿片类药物使用障碍(OUD)在全球范围内持续构成重大的公共卫生挑战和社会影响,阿片类药物依赖急剧增加导致潜在的滥用情况。尽管已有几种药物被批准用于治疗OUD,但这些药物对OUD的疗效仍需进一步提高,以便提供更安全、更有效的药物和心理社会治疗方法。理想的OUD治疗方法依赖于对阿片类药物依赖神经生物学机制理解的进展。包括μ、δ、κ、孤啡肽和ζ阿片受体在内的蛋白质是阿片类药物的直接靶点。每个受体都有一个庞大的蛋白质-蛋白质相互作用(PPI)网络,在接受各种治疗时表现不同,从而增加了开发有效阿片类药物成瘾治疗药物过程的复杂性。以下报告通过展示一项基于PPI网络的OUD机器学习研究来分析相关工作。我们研究了五个阿片受体网络中的500多种蛋白质,并随后收集了74个抑制剂数据集。通过将梯度提升决策树(GBDT)算法与两种基于先进自然语言处理(NLP)的分子指纹配对构建机器学习模型。利用这些模型,我们系统地评估了四种阿片受体候选药物的筛选和重新利用潜力。此外,在筛选潜在药物候选物时还考虑了吸收、分布、代谢、排泄和毒性(ADMET)特性。我们的研究可以成为OUD治疗药物开发的一个有价值且有前景的工具。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验