Suppr超能文献

心血管诊所中基于语音的SARS-CoV-2暴露筛查。

Voice-based screening for SARS-CoV-2 exposure in cardiovascular clinics.

作者信息

Sharma Abhinav, Oulousian Emily, Ni Jiayi, Lopes Renato, Cheng Matthew Pellan, Label Julie, Henriques Filipe, Lighter Claudia, Giannetti Nadia, Avram Robert

机构信息

DREAM-CV Lab, McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec H4A 3J1, Canada.

Division of Cardiology, McGill University, Montreal, Quebec, Canada.

出版信息

Eur Heart J Digit Health. 2021 Jun 16;2(3):521-527. doi: 10.1093/ehjdh/ztab055. eCollection 2021 Sep.

Abstract

AIMS

Artificial intelligence (A.I) driven voice-based assistants may facilitate data capture in clinical care and trials; however, the feasibility and accuracy of using such devices in a healthcare environment are unknown. We explored the feasibility of using the Amazon Alexa ('Alexa') A.I. voice-assistant to screen for risk factors or symptoms relating to SARS-CoV-2 exposure in quaternary care cardiovascular clinics.

METHODS AND RESULTS

We enrolled participants to be screened for signs and symptoms of SARS-CoV-2 exposure by a healthcare provider and then subsequently by the Alexa. Our primary outcome was interrater reliability of Alexa to healthcare provider screening using Cohen's Kappa statistic. Participants rated the Alexa in a post-study survey (scale of 1 to 5 with 5 reflecting strongly agree). This study was approved by the McGill University Health Centre ethics board. We prospectively enrolled 215 participants. The mean age was 46 years [17.7 years standard deviation (SD)], 55% were female, and 31% were French speakers (others were English). In total, 645 screening questions were delivered by Alexa. The Alexa mis-identified one response. The simple and weighted Cohen's kappa statistic between Alexa and healthcare provider screening was 0.989 [95% confidence interval (CI) 0.982-0.997] and 0.992 (955 CI 0.985-0.999), respectively. The participants gave an overall mean rating of 4.4 (out of 5, 0.9 SD).

CONCLUSION

Our study demonstrates the feasibility of an A.I. driven multilingual voice-based assistant to collect data in the context of SARS-CoV-2 exposure screening. Future studies integrating such devices in cardiovascular healthcare delivery and clinical trials are warranted.

REGISTRATION

https://clinicaltrials.gov/ct2/show/NCT04508972.

摘要

目的

人工智能(A.I.)驱动的语音助手可能有助于临床护理和试验中的数据采集;然而,在医疗环境中使用此类设备的可行性和准确性尚不清楚。我们探讨了在四级心血管护理诊所中使用亚马逊Alexa(“Alexa”)人工智能语音助手筛查与SARS-CoV-2暴露相关的风险因素或症状的可行性。

方法与结果

我们招募参与者,先由医疗服务提供者对其进行SARS-CoV-2暴露体征和症状的筛查,随后再由Alexa进行筛查。我们的主要结果是使用科恩kappa统计量来衡量Alexa与医疗服务提供者筛查之间的评分者间信度。参与者在研究后的调查中对Alexa进行评分(评分范围为1至5,5表示强烈同意)。本研究获得了麦吉尔大学健康中心伦理委员会的批准。我们前瞻性地招募了215名参与者。平均年龄为46岁[标准差(SD)为17.7岁],55%为女性,31%说法语(其他人说英语)。Alexa总共提出了645个筛查问题。Alexa错误识别了一个回答。Alexa与医疗服务提供者筛查之间的简单科恩kappa统计量和加权科恩kappa统计量分别为0.989[95%置信区间(CI)0.982 - 0.997]和0.992(95%CI 0.985 - 0.999)。参与者给出的总体平均评分为4.4(满分5分,标准差0.9)。

结论

我们的研究证明了人工智能驱动的多语言语音助手在SARS-CoV-2暴露筛查背景下收集数据的可行性。有必要开展未来研究,将此类设备整合到心血管医疗服务和临床试验中。

注册信息

https://clinicaltrials.gov/ct2/show/NCT04508972

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbbc/9707917/037c1fc52f90/ztab055f3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验