Chen Linxiao, Turunen Joonas
Department of Mathematics, ETH Zürich, Rämistr. 101, 8092 Zürich, Switzerland.
Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
Commun Math Phys. 2023;397(2):793-873. doi: 10.1007/s00220-022-04508-5. Epub 2022 Dec 20.
In Chen and Turunen (Commun Math Phys 374(3):1577-1643, 2020), we have studied the Boltzmann random triangulation of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical temperature. In this paper, we investigate the phase transition of this model by extending our previous results to arbitrary temperature: We compute the partition function of the model at all temperatures, and derive several critical exponents associated with the infinite perimeter limit. We show that the model has a local limit at any temperature, whose properties depend drastically on the temperature. At high temperatures, the local limit is reminiscent of the uniform infinite half-planar triangulation decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of finite width due to the energy cost of the main Ising interface between the two spin clusters imposed by the Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice geometric meaning. In addition to the phase transition, we also generalize our construction of the local limit from the two-step asymptotic regime used in Chen and Turunen (2020) to a more natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the main Ising interface, which coincides with predictions from the continuum theory of (a.k.a. Liouville quantum gravity).
在Chen和Turunen(《数学物理通讯》374(3):1577 - 1643, 2020)的研究中,我们探讨了圆盘的玻尔兹曼随机三角剖分,它与一个在其面上具有伊辛模型且在临界温度下具有多布鲁申边界条件的模型相耦合。在本文中,我们通过将之前的结果扩展到任意温度来研究该模型的相变:我们计算了该模型在所有温度下的配分函数,并推导了与无限周长极限相关的几个临界指数。我们表明该模型在任何温度下都有一个局部极限,其性质极大地依赖于温度。在高温下,局部极限让人联想到用亚临界渗流装饰的均匀无限半平面三角剖分。在低温下,由于多布鲁申边界条件施加的两个自旋簇之间主要伊辛界面的能量成本,局部极限会形成一个有限宽度的瓶颈。这种变化可以用一个具有良好几何意义的新序参量来概括。除了相变,我们还将局部极限的构造从Chen和Turunen(2020)中使用的两步渐近区域推广到更自然的对角渐近区域。在这个区域中,我们得到了一个与主要伊辛界面长度相关的标度极限,它与(又名刘维尔量子引力)连续统理论的预测一致。